×

The simplicial coalgebra of chains determines homotopy types rationally and one prime at a time. (English) Zbl 1496.55009

Let \(R\) be any commutative ring. The authors say that a map between reduced Kan complexes \(f: X\rightarrow Y\) is a \(\pi_1\)-\(R\)-equivalence when this map induces a bijection on fundamental groups \(\pi_1(f): \pi_1(X)\xrightarrow{\simeq}\pi_1(Y)\) and an isomorphism on the \(R\)-homology of universal covers \(H_*(\tilde{f},R): H_*(\tilde{X},R)\xrightarrow{\simeq} H_*(\tilde{Y},R)\). For instance, a map \(f\) is a \(\pi_1\)-\(\mathbb{Z}\)-equivalence if and only if \(f\) is a homotopy equivalence.
The authors consider the functor \(X\mapsto RX\), which, to any reduced Kan complex \(X\), associates the simplicial commutative \(R\)-coalgebra of chains on \(X\). Recall that a simplicial set \(X\) is reduced when its vertex set is reduced to a one-point set \(X_0 = *\). This assumption implies that the simplicial \(R\)-coalgebra \(RX\) is connected in the sense that its zero dimensional component \(RX_0\) is reduced to the ground ring \(R\).
The authors prove that the simplicial commutative \(R\)-coalgebra \(RX\) determines the simplicial set \(X\) up to \(\pi_1\)-\(R\)-equivalence when \(R\) is a field in the sense that reduced Kan complexes \(X\) and \(Y\) can be connected by a zigzag of \(\pi_1\)-\(R\)-equivalences if and only if the associated connected simplicial commutative \(R\)-coalgebras \(RX\) and \(RY\) can be connected by a zigzag of \(\Omega\)-quasi-isomorphisms, where an \(\Omega\)-quasi-isomorphism is a morphism of simplicial commutative \(R\)-coalgebras \(f: C\rightarrow D\) that induces a quasi-isomorphism \(\Omega N_*(f): \Omega N_*(C)\xrightarrow{\sim}\Omega N_*(D)\) on the cobar construction \(\Omega(-)\) of the normalized chains \(N_*(-)\) of our coalgebras. (We then use that the normalized chain complex of a simplicial \(R\)-coalgebra forms a differential graded \(R\)-coalgebra.)
The authors conjecture that an analogous statement holds over \(R = \mathbb{Z}\) and not only over a field. They establish that such a result holds in the special case of reduced Kan complexes whose universal cover is of finite type.
The proof of the results of the paper relies on the definition of a fundamental bialgebra, associated to any connected simplicial cocommutative coalgebra, and which, in the case of a simplicial coalgebra of chains \(RX\), is identified with the group algebra \(R[\pi_1(X)]\). The authors also define a notion of universal cover on the category of connected simplicial cocommutative \(R\)-coalgebras and they apply results of P. G. Goerss [Math. Z. 220, No. 4, 523–544 (1995; Zbl 0849.55011)] at the level of universal covers to obtain their statement.

MSC:

55P15 Classification of homotopy type
55U15 Chain complexes in algebraic topology
57T30 Bar and cobar constructions
55P60 Localization and completion in homotopy theory

Citations:

Zbl 0849.55011

References:

[1] Adams, J. F., On the cobar construction, Proc. Nat. Acad. Sci. U.S.A., 42, 409-412 (1956) · Zbl 0071.16404 · doi:10.1073/pnas.42.7.409
[2] Baues, Hans-Joachim, The cobar construction as a Hopf algebra, Invent. Math., 132, 3, 467-489 (1998) · Zbl 0912.55015 · doi:10.1007/s002220050231
[3] Berger, Clemens; Fresse, Benoit, Combinatorial operad actions on cochains, Math. Proc. Cambridge Philos. Soc., 137, 1, 135-174 (2004) · Zbl 1056.55006 · doi:10.1017/S0305004103007138
[4] Bousfield, A. K., The localization of spaces with respect to homology, Topology, 14, 133-150 (1975) · Zbl 0309.55013 · doi:10.1016/0040-9383(75)90023-3
[5] Bousfield, A. K.; Kan, D. M., Localization and completion in homotopy theory, Bull. Amer. Math. Soc., 77, 1006-1010 (1971) · Zbl 0239.55013 · doi:10.1090/S0002-9904-1971-12837-9
[6] Bousfield, A. K.; Kan, D. M., Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, v+348 pp. (1972), Springer-Verlag, Berlin-New York · Zbl 0259.55004
[7] Brown, Edgar H., Jr., Twisted tensor products. I, Ann. of Math. (2), 69, 223-246 (1959) · Zbl 0199.58201 · doi:10.2307/1970101
[8] Chuang, Joe; Holstein, Julian; Lazarev, Andrey, Homotopy theory of monoids and derived localization, J. Homotopy Relat. Struct., 16, 2, 175-189 (2021) · Zbl 1470.55002 · doi:10.1007/s40062-021-00276-6
[9] Curtis, Edward B., Simplicial homotopy theory, Advances in Math., 6, 107-209 (1971) (1971) · Zbl 0225.55002 · doi:10.1016/0001-8708(71)90015-6
[10] Eilenberg, Samuel; Mac Lane, Saunders, On the groups \(H(\Pi ,n). I\), Ann. of Math. (2), 58, 55-106 (1953) · Zbl 0050.39304 · doi:10.2307/1969820
[11] Goerss, Paul G., Simplicial chains over a field and \(p\)-local homotopy theory, Math. Z., 220, 4, 523-544 (1995) · Zbl 0849.55011 · doi:10.1007/BF02572629
[12] G\'{o}mez-Tato, Antonio; Halperin, Stephen; Tanr\'{e}, Daniel, Rational homotopy theory for non-simply connected spaces, Trans. Amer. Math. Soc., 352, 4, 1493-1525 (2000) · Zbl 0939.55010 · doi:10.1090/S0002-9947-99-02463-0
[13] Hess, Kathryn; Tonks, Andrew, The loop group and the cobar construction, Proc. Amer. Math. Soc., 138, 5, 1861-1876 (2010) · Zbl 1397.55006 · doi:10.1090/S0002-9939-09-10238-1
[14] Hinich, Vladimir; Schechtman, Vadim, Deformation theory and Lie algebra homology. I, Algebra Colloq., 4, 2, 213-240 (1997) · Zbl 0905.17022
[15] Husemoller, Dale; Moore, John C.; Stasheff, James, Differential homological algebra and homogeneous spaces, J. Pure Appl. Algebra, 5, 113-185 (1974) · Zbl 0364.18008 · doi:10.1016/0022-4049(74)90045-0
[16] Kadeishvili, Tornike; Saneblidze, Samson, A cubical model for a fibration, J. Pure Appl. Algebra, 196, 2-3, 203-228 (2005) · Zbl 1069.55011 · doi:10.1016/j.jpaa.2004.08.017
[17] M. Kontsevich, Symplectic geometry of homological algebra, Preprint available at the author’s homepage, 2009.
[18] K. Lefevre-Hasegawa, Sur les A-infini cat\'egories, Ph.D. Thesis, Univ. Paris 7, 0310337, 2003.
[19] Loday, Jean-Louis; Vallette, Bruno, Algebraic operads, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 346, xxiv+634 pp. (2012), Springer, Heidelberg · Zbl 1260.18001 · doi:10.1007/978-3-642-30362-3
[20] Mandell, Michael A., \(E_\infty\) algebras and \(p\)-adic homotopy theory, Topology, 40, 1, 43-94 (2001) · Zbl 0974.55004 · doi:10.1016/S0040-9383(99)00053-1
[21] Mandell, Michael A., Cochains and homotopy type, Publ. Math. Inst. Hautes \'{E}tudes Sci., 103, 213-246 (2006) · Zbl 1105.55003 · doi:10.1007/s10240-006-0037-6
[22] Positselski, Leonid, Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence, Mem. Amer. Math. Soc., 212, 996, vi+133 pp. (2011) · Zbl 1275.18002 · doi:10.1090/S0065-9266-2010-00631-8
[23] Quillen, Daniel, Rational homotopy theory, Ann. of Math. (2), 90, 205-295 (1969) · Zbl 0191.53702 · doi:10.2307/1970725
[24] Raptis, George, Simplicial presheaves of coalgebras, Algebr. Geom. Topol., 13, 4, 1967-2000 (2013) · Zbl 1298.18009 · doi:10.2140/agt.2013.13.1967
[25] M. Rivera, Adams’s cobar construction revisited, Submitted, 1910.08455, 2019.
[26] Rivera, Manuel; Zeinalian, Mahmoud, Cubical rigidification, the cobar construction and the based loop space, Algebr. Geom. Topol., 18, 7, 3789-3820 (2018) · Zbl 1423.18026 · doi:10.2140/agt.2018.18.3789
[27] Rivera, Manuel; Zeinalian, Mahmoud, Singular chains and the fundamental group, Fund. Math., 253, 3, 297-316 (2021) · Zbl 1479.55017 · doi:10.4064/fm734-6-2020
[28] Rivera, Manuel; Wierstra, Felix; Zeinalian, Mahmoud, The functor of singular chains detects weak homotopy equivalences, Proc. Amer. Math. Soc., 147, 11, 4987-4998 (2019) · Zbl 1432.55019 · doi:10.1090/proc/14555
[29] Rivera, Manuel; Wierstra, Felix; Zeinalian, Mahmoud, Rational homotopy equivalences and singular chains, Algebr. Geom. Topol., 21, 3, 1535-1552 (2021) · Zbl 1475.55015 · doi:10.2140/agt.2021.21.1535
[30] Szczarba, R. H., The homology of twisted cartesian products, Trans. Amer. Math. Soc., 100, 197-216 (1961) · Zbl 0108.35901 · doi:10.2307/1993317
[31] Steenrod, N. E., Products of cocycles and extensions of mappings, Ann. of Math. (2), 48, 290-320 (1947) · Zbl 0030.41602 · doi:10.2307/1969172
[32] Sullivan, Dennis P., Geometric topology: localization, periodicity and Galois symmetry, \(K\)-Monographs in Mathematics 8, xiv+283 pp. (2005), Springer, Dordrecht · Zbl 1078.55001
[33] Sullivan, Dennis, Infinitesimal computations in topology, Inst. Hautes \'{E}tudes Sci. Publ. Math., 47, 269-331 (1978) (1977) · Zbl 0374.57002
[34] Yuan, Allen, On the Higher Frobenius, (no paging) pp. (2020), ProQuest LLC, Ann Arbor, MI
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.