×

Asymptotic properties of an optimal principal eigenvalue with spherical weight and Dirichlet boundary conditions. (English) Zbl 1496.49013

Summary: We consider a weighted eigenvalue problem for the Dirichlet laplacian in a smooth bounded domain \(\Omega \subset \mathbb{R}^N\), where the bang-bang weight equals a positive constant \(\overline{m}\) on a ball \(B \subset \Omega\) and a negative constant \(- \underline{m}\) on \(\Omega \backslash B\). The corresponding positive principal eigenvalue provides a threshold to detect persistence/extinction of a species whose evolution is described by the heterogeneous Fisher-KPP equation in population dynamics. In particular, we study the minimization of such eigenvalue with respect to the position of \(B\) in \(\Omega \). We provide sharp asymptotic expansions of the optimal eigenpair in the singularly perturbed regime in which the volume of \(B\) vanishes. We deduce that, up to subsequences, the optimal ball concentrates at a point maximizing the distance from \(\partial \Omega \).

MSC:

49K30 Optimality conditions for solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
49R05 Variational methods for eigenvalues of operators
92D25 Population dynamics (general)
47A75 Eigenvalue problems for linear operators
35B40 Asymptotic behavior of solutions to PDEs

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1964), Dover: Dover New York City · Zbl 0171.38503
[2] Berestycki, H.; Hamel, F.; Roques, L., Analysis of the periodically fragmented environment model. I. Species persistence, J. Math. Biol., 51, 1, 75-113 (2005) · Zbl 1066.92047
[3] Brothers, J. E.; Ziemer, W. P., Minimal rearrangements of Sobolev functions, J. Reine Angew. Math., 384, 153-179 (1988) · Zbl 0633.46030
[4] Cantrell, R. S.; Cosner, C., Diffusive logistic equations with indefinite weights: Population models in disrupted environments, Proc. Roy. Soc. Edinburgh Sect. A, 112, 3-4, 293-318 (1989) · Zbl 0711.92020
[5] Cantrell, R. S.; Cosner, C., Diffusive logistic equations with indefinite weights: Population models in disrupted environments.II, SIAM J. Math. Anal., 22, 4, 1043-1064 (1991) · Zbl 0726.92024
[6] Cantrell, R. S.; Cosner, C., The effects of spatial heterogeneity in population dynamics, J. Math. Biol., 29, 4, 315-338 (1991) · Zbl 0722.92018
[7] Cantrell, R. S.; Cosner, C., (Spatial ecology via reaction-diffusion equations. Spatial ecology via reaction-diffusion equations, Wiley Series in Mathematical and Computational Biology (2003), John Wiley & Sons Ltd.: John Wiley & Sons Ltd. Chichester) · Zbl 1059.92051
[8] de Figueiredo, D.; Hönig, C., (Differential Equations: Proceedings of the 1st Latin American School of Differential Equations. Differential Equations: Proceedings of the 1st Latin American School of Differential Equations, Held at Sao Paulo, Brazil, June 29 - July 17, 1981. Differential Equations: Proceedings of the 1st Latin American School of Differential Equations. Differential Equations: Proceedings of the 1st Latin American School of Differential Equations, Held at Sao Paulo, Brazil, June 29 - July 17, 1981, Lecture Notes in Mathematics (1982), Springer) · Zbl 0484.00007
[9] Derlet, A.; Gossez, J.-P.; Takáč, P., Minimization of eigenvalues for a quasilinear elliptic Neumann problem with indefinite weight, J. Math. Anal. Appl., 371, 1, 69-79 (2010) · Zbl 1197.35105
[10] Dipierro, S.; Lippi, E. P.; Valdinoci, E., (Non)local logistic equations with Neumann conditions (2021), Preprint, arXiv:2101.02315
[11] Ftouhi, I., Where to place a spherical obstacle so as to maximize the first nonzero steklov eigenvalue, ESAIM Control Optim. Calc. Var., 28, 21 (2022), Paper no. 6 · Zbl 1523.35230
[12] Gilbarg, D.; Trudinger, N. S., (Elliptic Partial Differential Equations of Second Order. Elliptic Partial Differential Equations of Second Order, Classics in Mathematics (2001), Springer-Verlag: Springer-Verlag Berlin), Reprint of the 1998 edition · Zbl 1042.35002
[13] Henrot, A., (Extremum Problems for Eigenvalues of Elliptic Operators. Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics (2006), Birkhäuser Verlag: Birkhäuser Verlag Basel) · Zbl 1109.35081
[14] Henrot, A.; Zucco, D., Optimizing the first Dirichlet eigenvalue of the Laplacian with an obstacle, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 19, 4, 1535-1559 (2019) · Zbl 1445.35263
[15] II., E. M. Harrell; Kröger, P.; Kurata, K., On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue, SIAM J. Math. Anal., 33, 1, 240-259 (2001) · Zbl 0994.47015
[16] Lamboley, J.; Laurain, A.; Nadin, G.; Privat, Y., Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions, Calc. Var. Partial Differential Equations, 55, 6, 37 (2016), Paper No. 144 · Zbl 1366.49004
[17] Lions, P.-L., The concentration-compactness principle in the calculus of variations, the limit case. I, Rev. Mat. Iberoamericana, 1, 1, 145-201 (1985) · Zbl 0704.49005
[18] Lou, Y.; Yanagida, E., Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics, Japan J. Ind. Appl. Math., 23, 3, 275-292 (2006) · Zbl 1185.35059
[19] Mazari, I.; Ruiz-Balet, D., Quantitative stability for eigenvalues of Schrödinger operator, quantitative bathtub principle, and application to the turnpike property for a bilinear optimal control problem, SIAM J. Math. Anal., 54, 3, 3848-3883 (2022) · Zbl 1497.35480
[20] Mazzoleni, D.; Pellacci, B.; Verzini, G., Asymptotic spherical shapes in some spectral optimization problems, J. Math. Pures Appl., 135, 9, 256-283 (2020) · Zbl 1433.49059
[21] Mazzoleni, D.; Pellacci, B.; Verzini, G., Singular analysis of the optimizers of the principal eigenvalue in indefinite weighted neumann problems (2021), Preprint, arXiv:2111.01491
[22] Ni, W.-M.; Wei, J., On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48, 7, 731-768 (1995) · Zbl 0838.35009
[23] Pellacci, B.; Verzini, G., Best dispersal strategies in spatially heterogeneous environments: Optimization of the principal eigenvalue for indefinite fractional Neumann problems, J. Math. Biol., 76, 6, 1357-1386 (2018) · Zbl 1390.35404
[24] Pólya, G.; Szegö, G., (Isoperimetric Inequalities in Mathematical Physics. Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies (1951), Princeton University Press: Princeton University Press Princeton, N. J.) · Zbl 0044.38301
[25] Roques, L.; Hamel, F., Mathematical analysis of the optimal habitat configurations for species persistence, Math. Biosci., 210, 1, 34-59 (2007) · Zbl 1131.92068
[26] Tao, T., (An Introduction To Measure Theory. An Introduction To Measure Theory, Graduate Studies in Mathematics, vol. 126 (2011), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 1231.28001
[27] Tilli, P.; Zucco, D., Where best to place a Dirichlet condition in an anisotropic membrane?, SIAM J. Math. Anal., 47, 4, 2699-2721 (2015) · Zbl 1335.49073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.