×

Hardy spaces meet harmonic weights. (English) Zbl 1496.42030

Summary: We investigate the Hardy space \(H^1_L\) associated with a self-adjoint operator \(L\) defined in a general setting by S. Hofmann et al. [Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Providence, RI: American Mathematical Society (AMS) (2011; Zbl 1232.42018)]. We assume that there exists an \(L\)-harmonic non-negative function \(h\) such that the semigroup \(\exp (-tL)\), after applying the Doob transform related to \(h\), satisfies the upper and lower Gaussian estimates. Under this assumption we describe an illuminating characterisation of the Hardy space \(H^1_L\) in terms of a simple atomic decomposition associated with the \(L\)-harmonic function \(h\). Our approach also yields a natural characterisation of the \(BMO\)-type space corresponding to the operator \(L\) and dual to \(H^1_L\) in the same circumstances.
The applications include surprisingly wide range of operators, such as: Laplace operators with Dirichlet boundary conditions on some domains in \({\mathbb{R}^n} \), Schrödinger operators with certain potentials, and Bessel operators.

MSC:

42B30 \(H^p\)-spaces
42B35 Function spaces arising in harmonic analysis
42B25 Maximal functions, Littlewood-Paley theory
47B38 Linear operators on function spaces (general)

Citations:

Zbl 1232.42018

References:

[1] P. Auscher, X. T. Duong, and A. McIntosh, Boundedness of Banach space valued singular integral operators and Hardy spaces, Unpublished preprint, 2005.
[2] Auscher, Pascal, Calder\'{o}n reproducing formulas and applications to Hardy spaces, Rev. Mat. Iberoam., 865-900 (2015) · Zbl 1333.42041 · doi:10.4171/RMI/857
[3] Auscher, Pascal, Hardy spaces of differential forms and Riesz transforms on Riemannian manifolds, C. R. Math. Acad. Sci. Paris, 103-108 (2007) · Zbl 1109.43005 · doi:10.1016/j.crma.2006.11.023
[4] Auscher, Pascal, Hardy spaces and divergence operators on strongly Lipschitz domains of \(\mathbb{R}^n\), J. Funct. Anal., 148-184 (2003) · Zbl 1033.42019 · doi:10.1016/S0022-1236(03)00059-4
[5] Betancor, Jorge J., On Hardy spaces associated with Bessel operators, J. Anal. Math., 195-219 (2009) · Zbl 1195.44023 · doi:10.1007/s11854-009-0008-1
[6] Cao, Jun, Real interpolation of weighted tent spaces, Appl. Anal., 2415-2443 (2016) · Zbl 1362.46023 · doi:10.1080/00036811.2015.1091924
[7] Carron, Gilles, Riesz transform and \(L^p\)-cohomology for manifolds with Euclidean ends, Duke Math. J., 59-93 (2006) · Zbl 1106.58021 · doi:10.1215/S0012-7094-06-13313-6
[8] Chang, Der-Chen, \(H^p\) theory on a smooth domain in \(\mathbf{R}^N\) and elliptic boundary value problems, J. Funct. Anal., 286-347 (1993) · Zbl 0804.35027 · doi:10.1006/jfan.1993.1069
[9] Coifman, Ronald R., A real variable characterization of \(H^p\), Studia Math., 269-274 (1974) · Zbl 0289.46037 · doi:10.4064/sm-51-3-269-274
[10] Coifman, R. R., Some new function spaces and their applications to harmonic analysis, J. Funct. Anal., 304-335 (1985) · Zbl 0569.42016 · doi:10.1016/0022-1236(85)90007-2
[11] Coifman, Ronald R., Analyse harmonique non-commutative sur certains espaces homog\`enes, Lecture Notes in Mathematics, Vol. 242, v+160 pp. (1971), Springer-Verlag, Berlin-New York · Zbl 0224.43006
[12] Coifman, Ronald R., Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 569-645 (1977) · Zbl 0358.30023 · doi:10.1090/S0002-9904-1977-14325-5
[13] Duong, Xuan Thinh, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc., 943-973 (2005) · Zbl 1078.42013 · doi:10.1090/S0894-0347-05-00496-0
[14] Dziuba\'{n}ski, Jacek, On Riesz transforms characterization of \(H^1\) spaces associated with some Schr\"{o}dinger operators, Potential Anal., 39-50 (2011) · Zbl 1223.42009 · doi:10.1007/s11118-010-9202-0
[15] Dziuba\'{n}ski, Jacek, Hardy spaces for semigroups with Gaussian bounds, Ann. Mat. Pura Appl. (4), 965-987 (2018) · Zbl 1395.42053 · doi:10.1007/s10231-017-0711-y
[16] Dziuba\'{n}ski, Jacek, Multivariate H\"{o}rmander-type multiplier theorem for the Hankel transform, J. Fourier Anal. Appl., 417-437 (2013) · Zbl 1311.42025 · doi:10.1007/s00041-013-9260-y
[17] Dziuba\'{n}ski, Jacek, \(H^p\) spaces associated with Schr\"{o}dinger operators with potentials from reverse H\"{o}lder classes, Colloq. Math., 5-38 (2003) · Zbl 1083.42015 · doi:10.4064/cm98-1-2
[18] Dziuba\'{n}ski, Jacek, Hardy spaces \(H^1\) for Schr\"{o}dinger operators with certain potentials, Studia Math., 39-53 (2004) · Zbl 1061.47040 · doi:10.4064/sm164-1-3
[19] Dziuba\'{n}ski, Jacek, On Hardy spaces associated with certain Schr\"{o}dinger operators in dimension 2, Rev. Mat. Iberoam., 1035-1060 (2012) · Zbl 1364.42027 · doi:10.4171/RMI/702
[20] Dziuba\'{n}ski, Jacek, On isomorphisms of Hardy spaces associated with Schr\"{o}dinger operators, J. Fourier Anal. Appl., 447-456 (2013) · Zbl 1305.42025 · doi:10.1007/s00041-013-9262-9
[21] Dziuba\'{n}ski, Jacek, A characterization of Hardy spaces associated with certain Schr\"{o}dinger operators, Potential Anal., 917-930 (2014) · Zbl 1301.42039 · doi:10.1007/s11118-014-9400-2
[22] Fefferman, C., \(H^p\) spaces of several variables, Acta Math., 137-193 (1972) · Zbl 0257.46078 · doi:10.1007/BF02392215
[23] Garc\'{\i }a-Cuerva, Jos\'{e}, Weighted \(H^p\) spaces, Dissertationes Math. (Rozprawy Mat.), 63 pp. (1979) · Zbl 0434.42023
[24] Goldberg, David, A local version of real Hardy spaces, Duke Math. J., 27-42 (1979) · Zbl 0409.46060
[25] Grigor\cprime yan, Alexander, Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Differential Geom., 33-52 (1997) · Zbl 0865.58042
[26] Grigor’yan, Alexander, Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, xviii+482 pp. (2009), American Mathematical Society, Providence, RI; International Press, Boston, MA · Zbl 1206.58008 · doi:10.1090/amsip/047
[27] Gyrya, Pavel, Neumann and Dirichlet heat kernels in inner uniform domains, Ast\'{e}risque, viii+144 pp. (2011) · Zbl 1222.58001
[28] Hofmann, Steve, Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, Mem. Amer. Math. Soc., vi+78 pp. (2011) · Zbl 1232.42018 · doi:10.1090/S0065-9266-2011-00624-6
[29] Hofmann, Steve, Hardy and BMO spaces associated to divergence form elliptic operators, Math. Ann., 37-116 (2009) · Zbl 1162.42012 · doi:10.1007/s00208-008-0295-3
[30] Hofmann, Steve, Second order elliptic operators with complex bounded measurable coefficients in \(L^p\), Sobolev and Hardy spaces, Ann. Sci. \'{E}c. Norm. Sup\'{e}r. (4), 723-800 (2011) · Zbl 1243.47072 · doi:10.24033/asens.2154
[31] Hu, Guorong, Littlewood-Paley characterization of weighted Hardy spaces associated with operators, J. Aust. Math. Soc., 250-267 (2017) · Zbl 1376.42023 · doi:10.1017/S1446788716000562
[32] Ishige, Kazuhiro, The heat kernel of a Schr\"{o}dinger operator with inverse square potential, Proc. Lond. Math. Soc. (3), 381-410 (2017) · Zbl 1379.35079 · doi:10.1112/plms.12041
[33] Kania-Strojec, Edyta, Local atomic decompositions for multidimensional Hardy spaces, Rev. Mat. Complut., 409-434 (2021) · Zbl 1481.42029 · doi:10.1007/s13163-020-00354-y
[34] Kania-Strojec, Edyta, Riesz transform characterizations for multidimensional Hardy spaces, J. Geom. Anal., Paper No. 163, 37 pp. (2022) · Zbl 1485.42039 · doi:10.1007/s12220-022-00896-1
[35] Killip, R., Sobolev spaces adapted to the Schr\"{o}dinger operator with inverse-square potential, Math. Z., 1273-1298 (2018) · Zbl 1391.35123 · doi:10.1007/s00209-017-1934-8
[36] Latter, Robert H., A characterization of \(H^p(\mathbf{R}^n)\) in terms of atoms, Studia Math., 93-101 (1978) · Zbl 0398.42017 · doi:10.4064/sm-62-1-93-101
[37] Liskevich, Vitali, Estimates of integral kernels for semigroups associated with second-order elliptic operators with singular coefficients, Potential Anal., 359-390 (2003) · Zbl 1023.35041 · doi:10.1023/A:1021877025938
[38] Liu, Suying, An atomic decomposition of weighted Hardy spaces associated to self-adjoint operators, J. Funct. Anal., 2709-2723 (2013) · Zbl 1285.42019 · doi:10.1016/j.jfa.2013.08.003
[39] McIntosh, Alan, Miniconference on operator theory and partial differential equations. Operators which have an \(H_\infty\) functional calculus, Proc. Centre Math. Anal. Austral. Nat. Univ., 210-231 (1986), Austral. Nat. Univ., Canberra · Zbl 0634.47016
[40] Milman, Pierre D., Global heat kernel bounds via desingularizing weights, J. Funct. Anal., 373-398 (2004) · Zbl 1057.47043 · doi:10.1016/j.jfa.2003.12.008
[41] Preisner, Marcin, Riesz transform characterization of \(H^1\) spaces associated with certain Laguerre expansions, J. Approx. Theory, 229-252 (2012) · Zbl 1241.42017 · doi:10.1016/j.jat.2011.10.004
[42] Russ, Emmanuel, CMA/AMSI Research Symposium “Asymptotic Geometric Analysis, Harmonic Analysis, and Related Topics”. The atomic decomposition for tent spaces on spaces of homogeneous type, Proc. Centre Math. Appl. Austral. Nat. Univ., 125-135 (2007), Austral. Nat. Univ., Canberra · Zbl 1158.46020
[43] Sikora, Adam, Riesz transform, Gaussian bounds and the method of wave equation, Math. Z., 643-662 (2004) · Zbl 1066.58014 · doi:10.1007/s00209-003-0639-3
[44] Song, Liang, A \(q\)-atomic decomposition of weighted tent spaces on spaces of homogeneous type and its application, J. Geom. Anal., 3029-3059 (2021) · Zbl 1460.42038 · doi:10.1007/s12220-020-00382-6
[45] Song, Liang, A maximal function characterization for Hardy spaces associated to nonnegative self-adjoint operators satisfying Gaussian estimates, Adv. Math., 463-484 (2016) · Zbl 1334.42048 · doi:10.1016/j.aim.2015.09.026
[46] Song, Liang, Maximal function characterizations for Hardy spaces associated with nonnegative self-adjoint operators on spaces of homogeneous type, J. Evol. Equ., 221-243 (2018) · Zbl 1388.42064 · doi:10.1007/s00028-017-0398-y
[47] Song, Renming, Estimates on the Dirichlet heat kernel of domains above the graphs of bounded \(C^{1,1}\) functions, Glas. Mat. Ser. III, 273-286 (2004) · Zbl 1064.35066 · doi:10.3336/gm.39.2.09
[48] Stein, Elias M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, xiv+695 pp. (1993), Princeton University Press, Princeton, NJ · Zbl 0821.42001
[49] Stein, Elias M., On the theory of harmonic functions of several variables. I. The theory of \(H^p\)-spaces, Acta Math., 25-62 (1960) · Zbl 0097.28501 · doi:10.1007/BF02546524
[50] Strauss, Walter A., Partial differential equations, xii+425 pp. (1992), John Wiley & Sons, Inc., New York · Zbl 0817.35001
[51] Str\"{o}mberg, Jan-Olov, Weighted Hardy spaces, Lecture Notes in Mathematics, vi+193 pp. (1989), Springer-Verlag, Berlin · Zbl 0676.42021 · doi:10.1007/BFb0091154
[52] Uchiyama, Akihito, A maximal function characterization of \(H^p\) on the space of homogeneous type, Trans. Amer. Math. Soc., 579-592 (1980) · Zbl 0503.46020 · doi:10.2307/1999848
[53] Yang, Dachun, Musielak-Orlicz-Hardy spaces associated with operators and their applications, J. Geom. Anal., 495-570 (2014) · Zbl 1302.42033 · doi:10.1007/s12220-012-9344-y
[54] Zhang, Qi S., The global behavior of heat kernels in exterior domains, J. Funct. Anal., 160-176 (2003) · Zbl 1021.58019 · doi:10.1016/S0022-1236(02)00074-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.