×

A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative. (English) Zbl 1496.35426

Summary: This work is devoted to the time fractional differential equations (TFDEs) with the Atangana-Baleanu-Riemann (ABR) fractional derivative and their analytical solutions. We generalize the Nucci’s reduction method to find the exact solutions of such equations. Different general solutions of nonlinear ABR fractional differential equations besides first integrals are discussed in different types such as soliton and implicit solutions.

MSC:

35R11 Fractional partial differential equations
35C05 Solutions to PDEs in closed form
35C08 Soliton solutions
Full Text: DOI

References:

[1] Caputo, M.; Fabrizio, M., A new definition of fractional derivative without singular kernel, Progr Fract Differ Appl, 1, 73-85 (2015)
[2] Atangana, A.; Baleanu, D., New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm Sci, 20, 2, 763 (2016)
[3] Abro, K. A.; Atangana, A., A comparative study of convective fluid motion in rotating cavity via Atangana-Baleanu and Caputo-Fabrizio fractal-fractional differentiations, Eur Phys J Plus, 135, 2, 1-16 (2020)
[4] Atangana, A., Modelling the spread of COVID-19 with new fractal-fractional operators: can the lockdown save mankind before vaccination?, Chaos Solitons Fractals, 136, 109860 (2020)
[5] Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; López-López, M. G.; Alvarado-Martínez, V. M., Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media, J Electromagn Waves Appl, 30, 15, 1937-1952 (2016)
[6] Owolabi, K. M.; Atangana, A.; Akgül, A., Modelling and analysis of fractal-fractional partial differential equations: application to reaction-diffusion model, Alex Eng J, 59, 4, 2477-2490 (2020)
[7] Sweilam, N. H.; Al-Mekhlafi, S. M.; Assiri, T.; Atangana, A., Optimal control for cancer treatment mathematical model using Atangana-Baleanu-Caputo fractional derivative, Adv Differ Equ, 2020, 1, 1-21 (2020) · Zbl 1485.92053
[8] Abbasbandy, S.; Kazem, S.; Alhuthali, M. S.; Alsulami, H. H., Application of the operational matrix of fractional-order Legendre functions for solving the time-fractional convection-diffusion equation, Appl Math Comput, 266, 31-40 (2015) · Zbl 1410.65388
[9] Aslefallah, M.; Abbasbandy, S.; Shivanian, E., Fractional Cable problem in the frame of meshless singular boundary method, Eng Anal Bound Elem, 108, 124-132 (2019) · Zbl 1464.74385
[10] Baseri, A.; Abbasbandy, S.; Babolian, E., A collocation method for fractional diffusion equation in a long time with Chebyshev functions, Appl Math Comput, 322, 55-65 (2018) · Zbl 1427.65281
[11] Gómez-Aguilar, J. F.; Atangana, A.; Morales-Delgado, V. F., Electrical circuits RC, LC, and RL described by Atangana-Baleanu fractional derivatives, Int J Circuit Theory Appl, 45, 11, 1514-1533 (2017)
[12] Hashemi, M. S.; Ashpazzadeh, E.; Moharrami, M.; Lakestani, M., Fractional order alpert multiwavelets for discretizing delay fractional differential equation of Pantograph type, Appl Numer Math, 170, 876-913 (2021) · Zbl 1482.65102
[13] Hashemi, M. S.; Atangana, A.; Hajikhah, S., Solving fractional Pantograph delay equations by an effective computational method, Math Comput Simul, 177, 295-305 (2020) · Zbl 1510.65130
[14] Hashemi, M. S.; Baleanu, D., Numerical approximation of higher-order time-fractional Telegraph equation by using a combination of a geometric approach and method of line, J Comput Phys, 316, 10-20 (2016) · Zbl 1349.65396
[15] Hashemi, M. S.; Inc, M.; Yusuf, A., On three-dimensional variable order time fractional chaotic system with nonsingular kernel, Chaos Solitons Fractals, 133, 109628 (2020) · Zbl 1483.65117
[16] Kheybari, S.; Darvishi, M. T.; Hashemi, M. S., Numerical simulation for the space-fractional diffusion equations, Appl Math Comput, 348, 57-69 (2019) · Zbl 1429.65244
[17] Kheybari, S.; Darvishi, M. T.; Hashemi, M. S., A semi-analytical approach to Caputo type time-fractional modified anomalous sub-diffusion equations, Appl Numer Math, 158, 103-122 (2020) · Zbl 1452.65275
[18] Owolabi, K. M.; Atangana, A., On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative to model chaotic problems, Chaos Interdiscip J Nonlinear Sci, 29, 2, 023111 (2019) · Zbl 1409.34016
[19] Shivanian, E., Local radial basis function interpolation method to simulate 2D fractional-time convection-diffusion-reaction equations with error analysis, Numer Methods Partial Differ Equ, 33, 3, 974-994 (2017) · Zbl 1370.65041
[20] Tameh, M. S.; Shivanian, E., Fractional shifted Legendre tau method to solve linear and nonlinear variable-order fractional partial differential equations, Math Sci, 15, 1, 11-19 (2021) · Zbl 1473.65246
[21] Gazizov, R. K.; Ibragimov, N. H.; Lukashchuk, S. Y., Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations, Commun Nonlinear Sci Numer Simul, 23, 1-3, 153-163 (2015) · Zbl 1351.35250
[22] Hashemi, M. S.; Baleanu, D., Lie symmetry analysis and exact solutions of the time fractional Gas dynamics equation, J Optoelectron Adv Mater, 18, 3-4, 383-388 (2016)
[23] Hashemi, M. S.; Baleanu, D., Lie symmetry analysis of fractional differential equations (2020), CRC Press · Zbl 1436.35001
[24] Najafi, R.; Bahrami, F.; Hashemi, M. S., Classical and nonclassical Lie symmetry analysis to a class of nonlinear time-fractional differential equations, Nonlinear Dyn, 87, 3, 1785-1796 (2017) · Zbl 1384.35140
[25] Pashayi, S.; Hashemi, M. S.; Shahmorad, S., Analytical Lie group approach for solving fractional integro-differential equations, Commun Nonlinear Sci Numer Simul, 51, 66-77 (2017) · Zbl 1471.45006
[26] Prakash, P.; Choudhary, S.; Daftardar-Gejji, V., Exact solutions of generalized nonlinear time-fractional reaction-diffusion equations with time delay, Eur Phys J Plus, 135, 6, 1-24 (2020)
[27] Aliyu, A. I.; Li, Y.; Baleanu, D., Invariant subspace and classification of soliton solutions of the coupled nonlinear Fokas-Liu system, Front Phys, 7, 39 (2019)
[28] Choudhary, S.; Daftardar-Gejji, V., Solving systems of multi-term fractional PDEs: invariant subspace approach, Int J Model Simul Sci Comput, 10, 01, 1941010 (2019)
[29] Gazizov, R. K.; Kasatkin, A. A., Construction of exact solutions for fractional order differential equations by the invariant subspace method, Comput Math Appl, 66, 5, 576-584 (2013) · Zbl 1348.34012
[30] Hashemi, M. S., Invariant subspaces admitted by fractional differential equations with conformable derivatives, Chaos, Solitons Fractals, 107, 161-169 (2018) · Zbl 1381.34014
[31] Hashemi, M. S.; Balmeh, Z., On invariant analysis and conservation laws of the time fractional variant Boussinesq and coupled Boussinesq-Burgers equations, Eur Phys J Plus, 133, 10, 1-11 (2018)
[32] Sahadevan, R.; Prakash, P., On Lie symmetry analysis and invariant subspace methods of coupled time fractional partial differential equations, Chaos Solitons Fractals, 104, 107-120 (2017) · Zbl 1380.35161
[33] Akbulut, A.; Kaplan, M., Auxiliary equation method for time-fractional differential equations with conformable derivative, Comput Math Appl, 75, 3, 876-882 (2018) · Zbl 1409.35208
[34] Hashemi, M. S.; Akgül, A., Solitary wave solutions of time-space nonlinear fractional Schrödingers equation: two analytical approaches, J Comput Appl Math, 339, 147-160 (2018) · Zbl 1392.35286
[35] Jena, R. M.; Chakraverty, S.; Rezazadeh, H.; Domiri Ganji, D., On the solution of time-fractional dynamical model of Brusselator reaction-diffusion system arising in chemical reactions, Math Methods Appl Sci, 43, 7, 3903-3913 (2020) · Zbl 1447.35357
[36] Park, C.; Khater, M. M.; Abdel-Aty, A.-H.; Attia, R. A.; Rezazadeh, H.; Zidan, A., Dynamical analysis of the nonlinear complex fractional emerging telecommunication model with higher-order dispersive cubic-quintic, Alex Eng J, 59, 3, 1425-1433 (2020)
[37] Raza, N.; Rafiq, M. H.; Kaplan, M.; Kumar, S.; Chu, Y.-M., The unified method for abundant soliton solutions of local time fractional nonlinear evolution equations, Results Phys, 22, 103979 (2021)
[38] Rezazadeh, H.; Mirhosseini-Alizamini, S. M.; Eslami, M.; Rezazadeh, M.; Mirzazadeh, M.; Abbagari, S., New optical solitons of nonlinear conformable fractional Schrödinger-Hirota equation, Optik, 172, 545-553 (2018)
[39] Yue, C.; Khater, M. M.; Attia, R. A.; Lu, D., The plethora of explicit solutions of the fractional KS equation through liquid-gas bubbles mix under the thermodynamic conditions via Atangana-Baleanu derivative operator, Adv Differ Equ, 2020, 1, 1-12 (2020) · Zbl 1487.35426
[40] Khater, M. M.; Ghanbari, B.; Nisar, K. S.; Kumar, D., Novel exact solutions of the fractional Bogoyavlensky-Konopelchenko equation involving the Atangana-Baleanu-Riemann derivative, Alex Eng J, 59, 5, 2957-2967 (2020)
[41] Rezazadeh, H.; Adel, W.; Tala-Tebue, E.; Yao, S.-W.; Inc, M., Bright and singular soliton solutions to the Atangana-Baleanu fractional system of equations for the ISALWs, J King Saud Univ Sci, 101420 (2021)
[42] Rezazadeh, H.; Souleymanou, A.; Korkmaz, A.; Khater, M.; Mukam, S. P.; Kuetche, V. K., New exact solitary waves solutions to the fractional Fokas-Lenells equation via Atangana-Baleanu derivative operator, Int J Mod Phys B, 34, 31, 2050309 (2020) · Zbl 1454.35369
[43] Hashemi, M. S.; Nucci, M. C.; Abbasbandy, S., Group analysis of the modified generalized Vakhnenko equation, Commun Nonlinear Sci Numer Simul, 18, 4, 867-877 (2013) · Zbl 1261.35138
[44] Nucci, M. C.; Leach, P. L., The determination of nonlocal symmetries by the technique of reduction of order, J Math Anal Appl, 251, 2, 871-884 (2000) · Zbl 0977.34029
[45] Diethelm, K., The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type (2010), Springer Science & Business Media · Zbl 1215.34001
[46] Atangana, A.; Gómez-Aguilar, J. F., Numerical approximation of Riemann-Liouville definition of fractional derivative: from Riemann-Liouville to Atangana-Baleanu, Numer Methods Partial Differ Equ, 34, 5, 1502-1523 (2018) · Zbl 1417.65113
[47] Atangana, A.; Koca, I., Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89, 447-454 (2016) · Zbl 1360.34150
[48] Schamel, H., Stationary solitary, snoidal and sinusoidal ion acoustic waves, Plasma Phys, 14, 10, 905 (1972)
[49] El-Shamy, E. F., Dust-ion-acoustic solitary waves in a hot magnetized dusty plasma with charge fluctuations, Chaos Solitons Fractals, 25, 3, 665-674 (2005) · Zbl 1084.35070
[50] Rosenau, P.; Hyman, J. M., Compactons: solitons with finite wavelength, Phys Rev Lett, 70, 5, 564 (1993) · Zbl 0952.35502
[51] Ibragimov, N. H.; Khamitova, R. S.; Valenti, A., Self-adjointness of a generalized Camassa-Holm equation, Appl Math Comput, 218, 6, 2579-2583 (2011) · Zbl 1246.35175
[52] Bazeia, D.; Das, A.; Losano, L.; Santos, M. J.d., Traveling wave solutions of nonlinear partial differential equations, Appl Math Lett, 23, 6, 681-686 (2010) · Zbl 1190.35195
[53] Lin, Z., Symmetries and exact solution of Rosenau-Hyman equation., Basic Sci J Text Univ Fangzhi Gaoxiao Jichu Kexue Xuebao, 28, 1 (2015) · Zbl 1340.35318
[54] Rus, F.; Villatoro, F. R., Padé numerical method for the Rosenau-Hyman compacton equation, Math Comput Simul, 76, 1-3, 188-192 (2007) · Zbl 1135.65364
[55] de Souza, W. L.; de Mello S., É., Time-dependent exact solutions for Rosenau-Hyman equations with variable coefficients, Commun Nonlinear Sci Numer Simul, 20, 3, 668-673 (2015) · Zbl 1334.37079
[56] Akgül, A.; Aliyu, A. I.; Inc, M.; Yusuf, A.; Baleanu, D., Approximate solutions to the conformable Rosenau-Hyman equation using the two-step Adomian decomposition method with Pad é approximation, Math Methods Appl Sci, 43, 13, 7632-7639 (2020) · Zbl 1452.34008
[57] Cinar, M.; Secer, A.; Bayram, M., An application of Genocchi wavelets for solving the fractional Rosenau-Hyman equation, Alex Eng J, 60, 6, 5331-5340 (2021)
[58] Singh, J.; Kumar, D.; Swroop, R.; Kumar, S., An efficient computational approach for time-fractional Rosenau-Hyman equation, Neural Comput Appl, 30, 10, 3063-3070 (2018)
[59] Baldwin, D.; Göktaş, Ü.; Hereman, W.; Hong, L.; Martino, R. S.; Miller, J. C., Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs, J Symb Comput, 37, 6, 669-705 (2004) · Zbl 1137.35324
[60] Fu, Z.; Liu, S.; Liu, S., New kinds of solutions to Gardner equation, Chaos, Solitons Fractals, 20, 2, 301-309 (2004) · Zbl 1046.35097
[61] Ren, B. O., Symmetry reduction related with nonlocal symmetry for Gardner equation, Commun Nonlinear Sci Numer Simul, 42, 456-463 (2017) · Zbl 1473.35490
[62] Wazwaz, A.-M., New solitons and kink solutions for the Gardner equation, Commun Nonlinear Sci Numer Simul, 12, 8, 1395-1404 (2007) · Zbl 1118.35352
[63] Zhang, L.-H.; Dong, L.-H.; Yan, L.-M., Construction of non-travelling wave solutions for the generalized variable-coefficient Gardner equation, Appl Math Comput, 203, 2, 784-791 (2008) · Zbl 1163.35480
[64] Benjamin, T. B.; Bona, J. L.; Mahony, J. J., Model equations for long waves in nonlinear dispersive systems, Philos Trans R Soc Lond Ser A Math Phys Sci, 272, 1220, 47-78 (1972) · Zbl 0229.35013
[65] Estévez, P. G.; Kuru, Ş.; Negro, J.; Nieto, L. M., Travelling wave solutions of the generalized Benjamin-Bona-Mahony equation, Chaos, Solitons Fractals, 40, 4, 2031-2040 (2009) · Zbl 1198.35219
[66] Hajiketabi, M.; Abbasbandy, S.; Casas, F., The lie-group method based on radial basis functions for solving nonlinear high dimensional generalized Benjamin-Bona-Mahony-Burgers equation in arbitrary domains, Appl Math Comput, 321, 223-243 (2018) · Zbl 1427.65286
[67] Johnson, M. A., On the stability of periodic solutions of the generalized Benjamin-Bona-Mahony equation, Phys D Nonlinear Phenom, 239, 19, 1892-1908 (2010) · Zbl 1204.37075
[68] Rezazadeh, H.; Inc, M.; Baleanu, D., New solitary wave solutions for variants of (3+ 1)-dimensional Wazwaz-Benjamin-Bona-Mahony equations, Front Phys, 8, 332 (2020)
[69] Wazwaz, A.-M., Exact solutions with compact and noncompact structures for the one-dimensional generalized Benjamin-Bona-Mahony equation, Commun Nonlinear Sci Numer Simul, 10, 8, 855-867 (2005) · Zbl 1070.35074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.