×

Selection-mutation dynamics with asymmetrical reproduction kernels. (English) Zbl 1496.35398

This work mathematically studies some selection-mutation models of nonlocal type, describing the distribution of a sexual population structured by a phenotypical trait. The novelty consists in considering an asymmetry in the trait heredity or in the fecundity between the parents, situations that occur, for example, in certain mosquitoes species.
The main results are related to the asymptotic behavior of the population distribution. In particular, some non-extinction conditions and BV estimates on the total population are provided. Moreover, concentration phenomena are considered: some general estimates are given for the Hamilton-Jacobi equations that arise from this study, and concentration is obtained in some special situations.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
92D25 Population dynamics (general)
35F21 Hamilton-Jacobi equations
35B40 Asymptotic behavior of solutions to PDEs
45K05 Integro-partial differential equations
35R09 Integro-partial differential equations
35R07 PDEs on time scales

References:

[1] Barles, G., (Solutions de viscosité des équations de Hamilton-Jacobi. Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques & Applications (Berlin), vol. 17 (1994), Springer-Verlag: Springer-Verlag Paris), x+194 · Zbl 0819.35002
[2] Billiard, S.; Collet, P.; Ferrière, R.; Méléard, S.; Tran, V. C., Stochastic dynamics for adaptation and evolution of microorganisms, (European Congress of Mathematics (2018), Eur. Math. Soc., Zürich), 525-550 · Zbl 1401.92156
[3] Bourgeron, T.; Calvez, V.; Garnier, J.; Lepoutre, T., Existence of recombination-selection equilibria for sexual populations (2017), ArXiv E-Prints
[4] Bulmer, M. G., the Mathematical Theory of Quantitative Genetics, x+255 (1980), The Clarendon Press, Oxford University Press,Oxford Science Publications · Zbl 0441.92007
[5] Bürger, R., (the Mathematical Theory of Selection, Recombination, and Mutation. the Mathematical Theory of Selection, Recombination, and Mutation, Wiley Series in Mathematical and Computational Biology (2000), John Wiley & Sons, Ltd., Chichester), xii+409 · Zbl 0959.92018
[6] Calvez, V.; Garnier, J.; Patout, F., Asymptotic analysis of a quantitative genetics model with nonlinear integral operator, J. éc. Polytech. Math., 6, 537-579 (2019) · Zbl 1420.35167
[7] Calvez, V.; Lam, K.-Y., Uniqueness of the viscosity solution of a constrained hamilton-Jacobi equation, Calc. Var. Partial Differential Equations, 59, 5 (2020), Paper No. 163, 22 · Zbl 1448.35102
[8] Champagnat, N.; Jabin, P.-E., The evolutionary limit for models of populations interacting competitively via several resources, J. Differential Equations, 251, 1, 176-195 (2011) · Zbl 1227.35040
[9] Cheung, M., Pairwise comparison dynamics for games with continuous strategy space, J. Econ. Theory, 153, 344-375 (2014) · Zbl 1309.91021
[10] Cheung, M., Imitative dynamics for games with continuous strategy space, Games Econom. Behav., 99, 206-223 (2016) · Zbl 1394.91039
[11] Collet, P.; Méléard, S.; Metz, J. A.J., A rigorous model study of the adaptive dynamics of Mendelian diploids, J. Math. Biol., 67, 3, 569-607 (2013) · Zbl 1300.92075
[12] Coron, C.; Costa, M.; Leman, H.; Smadi, C., A stochastic model for speciation by mating preferences, J. Math. Biol., 76, 6, 1421-1463 (2018) · Zbl 1390.60282
[13] Crandall, M. G.; Ishii, H.; Lions, P.-L., User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27, 1, 1-67 (1992) · Zbl 0755.35015
[14] Degond, P.; Frouvelle, A.; Raoul, G., Local stability of perfect alignment for a spatially homogeneous kinetic model, J. Stat. Phys., 157, 1, 84-112 (2014) · Zbl 1302.82072
[15] Desvillettes, L.; Jabin, P. E.; Mischler, S.; Raoul, G., On selection dynamics for continuous structured populations, Commun. Math. Sci., 6, 3, 729-747 (2008) · Zbl 1176.45009
[16] Dieckmann, U.; Doebeli, M., On the origin of species by sympatric speciation, Nature, 400, 354-357 (1999)
[17] Diekmann, O.; Jabin, P.-E.; Mischler, S.; Perthame, B., The dynamics of adaptation: an illuminating example and a hamilton-Jacobi approach, Theor. Popul. Biol., 67, 4, 257-271 (2005) · Zbl 1072.92035
[18] Doebeli, M.; Blok, H. J.; Leimar, O.; Dieckmann, U., Multimodal pattern formation in phenotype distributions of sexual populations, Proc. R. Soc. B, 274, 1608, 347-357 (2007)
[19] Fournier, N.; Perthame, B., A nonexpanding transport distance for some structured equations, SIAM J. Math. Anal., 53, 6, 6847-6872 (2021) · Zbl 1480.35072
[20] Hofbauer, J.; Sigmund, K., Evolutionary game dynamics, Bull. Amer. Math. Soc. (N.S.), 40, 4, 479-519 (2003) · Zbl 1049.91025
[21] Jabin, P.-E.; Liu, H., On a non-local selection-mutation model with a gradient flow structure, Nonlinearity, 30, 11, 4220-4238 (2017) · Zbl 1382.35313
[22] Jabin, P. E.; Raoul, G., On selection dynamics for competitive interactions, J. Math. Biol., 63, 3, 493-517 (2011) · Zbl 1230.92038
[23] Kisdi, E.; Geritz, S. A.H., Adaptive dynamics in Allele space: Evolution of genetic polymorphism by small mutations in a heterogeneous environment, Evolution, 53, 4, 993-1008 (1999)
[24] Lions, P.-L.; Souganidis, P. E., Fully nonlinear stochastic partial differential equations: non-smooth equations and applications, C. R. Acad. Sci. Paris SÉR. I Math., 327, 8, 735-741 (1998) · Zbl 0924.35203
[25] Lorz, A.; Lorenzi, T.; Clairambault, J.; Escargueil, A.; Perthame, B., Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors, Bull. Math. Biol., 77, 1, 1-22 (2015) · Zbl 1334.92204
[26] Lorz, A.; Mirrahimi, S.; Perthame, B., Dirac Mass dynamics in multidimensional nonlocal parabolic equations, Comm. Partial Differential Equations, 36, 6, 1071-1098 (2011) · Zbl 1229.35113
[27] Magal, P.; Raoul, G., Dynamics of a kinetic model describing protein exchanges in a cell population (2015), ArXiv E-Prints
[28] Mirrahimi, S.; Raoul, G., Dynamics of sexual populations structured by a space variable and a phenotypical trait, Theor. Populat. Biol., 84, 87-103 (2013) · Zbl 1275.92098
[29] Nadin, G.; Strugarek, M.; Vauchelet, N., Hindrances to bistable front propagation, application to Wolbachia, J. Math. Biol., 76, 6, 1489-1533 (2018) · Zbl 1411.34039
[30] Pasteur, N.; Raymond, M., Insecticide resistance genes in mosquitoes: their mutations, migration, and selection in field populations, J. Hered., 87, 6, 444-449 (1996)
[31] Patout, F., The Cauchy problem for the infinitesimal model in the regime of small variance (2020), ArXiv E-Prints
[32] Perthame, B.; Barles, G., Dirac Concentrations in Lotka-Volterra parabolic PDEs, Indiana Univ. Math. J., 57, 7, 3275-3301 (2008) · Zbl 1172.35005
[33] Raoul, G., Long time evolution of populations under selection and vanishing mutations, Acta Appl. Math., 114, 1-2, 1-14 (2011) · Zbl 1213.35112
[34] Sandholm, W., Potential games with continuous player sets, J. Econ. Theory, 97, 81-103 (2001) · Zbl 0990.91005
[35] Sandholm, W., Population Games and Evolutionary Dynamics (2010), MIT Press: MIT Press Cambridge · Zbl 1208.91003
[36] Schechtman, H.; Souza, M. O., Costly inheritance and the persistence of insecticide resistance in aedes aegypti populations, PLOS ONE, 10, 5, 1-22 (2015)
[37] Strugarek, M.; Vauchelet, N.; Zubelli, J. P., Quantifying the survival uncertainty of Wolbachia-infected mosquitoes in a spatial model, Math. Biosci. Eng., 15, 4, 961-991 (2018) · Zbl 1406.92522
[38] Tufto, J., Quantitative genetic models for the balance between migration and stabilizing selection, Genet. Res., 76, 3, 285-293 (2000)
[39] Turelli, M.; Barton, N. H., Genetic and statistical analyses of strong selection on polygenic traits: What, me normal?, Genetics, 138, 3, 913-941 (1994)
[40] van Doorn, G. G.; Dieckmann, U., The long-term evolution of multilocus traits under frequency-dependent disruptive selection, Evolution, 60, 11, 2226-2238 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.