×

Convex duality for principal frequencies. (English) Zbl 1496.35015

Summary: We consider the sharp Sobolev-Poincaré constant for the embedding of \(W^{1, 2}_0(\Omega)\) into \(L^q(\Omega) \). We show that such a constant exhibits an unexpected dual variational formulation, in the range \(1< q<2\). Namely, this can be written as a convex minimization problem, under a divergence-type constraint. This is particularly useful in order to prove lower bounds. The result generalizes what happens for the torsional rigidity (corresponding to \(q = 1\)) and extends up to the case of the first eigenvalue of the Dirichlet-Laplacian (i.e., to \(q = 2\)).

MSC:

35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
35J25 Boundary value problems for second-order elliptic equations
35P15 Estimates of eigenvalues in context of PDEs

References:

[1] G, On a problem of Huang concerning best constants in Sobolev embeddings, Annali di Matematica, 194, 767-779 (2015) · Zbl 1321.35056 · doi:10.1007/s10231-013-0397-8
[2] R. Benguria, The von Weizsäcker and exchange corrections in the Thomas-Fermi theory, Ph. D. thesis of Princeton University, 1979.
[3] R, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Commun. Math. Phys., 79, 167-180 (1981) · Zbl 0478.49035 · doi:10.1007/BF01942059
[4] M, Estimates for the torsion function and Sobolev constants, Potential Anal., 36, 607-616 (2012) · Zbl 1246.60108 · doi:10.1007/s11118-011-9246-9
[5] M, Embedding theorems and quasi-linear elliptic boundary value problems for unbounded domains, T. Am. Math. Soc., 172, 261-278 (1972) · Zbl 0253.35038 · doi:10.1090/S0002-9947-1972-0312241-X
[6] L, On principal frequencies and isoperimetric ratios in convex sets, Ann. Fac. Sci. Toulouse Math., 29, 977-1005 (2020) · Zbl 1454.35242 · doi:10.5802/afst.1653
[7] L, Schrödinger operators with negative potentials and Lane-Emden densities, J. Funct. Anal., 274, 1825-1863 (2018) · Zbl 1388.35135 · doi:10.1016/j.jfa.2017.10.005
[8] L, On principal frequencies, volume and inradius in convex sets, Nonlinear Differ. Equ. Appl., 27, 12 (2020) · Zbl 1433.35204 · doi:10.1007/s00030-019-0614-2
[9] H, Remarks on sublinear elliptic equations, Nonlinear Anal., 10, 55-64 (1986) · Zbl 0593.35045 · doi:10.1016/0362-546X(86)90011-8
[10] D. Bucur, G. Buttazzo, Variational Methods in Shape Optimization Problems, Boston, MA: Birkhäuser Boston, Inc., 2005. · Zbl 1117.49001
[11] H, Solutions of the Cheeger problem via torsion functions, J. Math. Anal. Appl., 381, 263-279 (2011) · Zbl 1260.49080 · doi:10.1016/j.jmaa.2011.03.002
[12] G, Sharp estimates for the anisotropic torsional rigidity and the principal frequency, J. Math. Anal. Appl., 457, 1153-1172 (2018) · Zbl 1516.35276 · doi:10.1016/j.jmaa.2017.03.055
[13] T, Interpolating between torsional rigidity and principal frequency, J. Math. Anal. Appl., 379, 818-826 (2011) · Zbl 1216.35016 · doi:10.1016/j.jmaa.2011.02.004
[14] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, In: Proceedings of the Princeton conference in honor of Professor S. Bochner, Princeton University Press, 1970,195-199. · Zbl 0212.44903
[15] F, Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle, Adv. Nonlinear Anal., 9, 278-291 (2020) · Zbl 1417.35080
[16] J, The torsional rigidity and variational methods, Am. J. Math., 70, 107-116 (1948) · Zbl 0035.11502 · doi:10.2307/2371935
[17] G, Absolute continuity of the best Sobolev constant of a bounded domain, J. Math. Anal. Appl., 404, 420-428 (2013) · Zbl 1304.46030 · doi:10.1016/j.jmaa.2013.03.044
[18] M, The Bergman analytic content of planar domains, Comput. Meth. Funct. Th., 17, 369-379 (2017) · Zbl 1384.30010 · doi:10.1007/s40315-016-0189-4
[19] M, Torsional rigidity and Bergman analytic content of simply connected regions, Comput. Meth. Funct. Th., 19, 37-63 (2019) · Zbl 1419.30022 · doi:10.1007/s40315-018-0252-4
[20] I, On the Cheeger inequality for convex sets, J. Math. Anal. Appl., 504, 125443 (2021) · Zbl 1477.52013 · doi:10.1016/j.jmaa.2021.125443
[21] J, Physical interpretation and strengthing of M. Protter’s method for vibrating nonhomogeneous membranes; its analogue for Schrödinger’s equation, Pacific J. Math., 11, 971-980 (1961) · Zbl 0109.43301 · doi:10.2140/pjm.1961.11.971
[22] J, Sur la fréquence fondamentale d’une membrane vibrante: évaluations par défaut et principe de maximum, Z. Angew. Math. Phys., 11, 387-413 (1960) · Zbl 0104.41403 · doi:10.1007/BF01604498
[23] R, A priori estimate for the first eigenvalue of the \(p-\) Laplacian, Differ. Integral Equ., 28, 1011-1028 (2015) · Zbl 1363.35096
[24] R, A priori estimates of positive solutions for sublinear elliptic equations, T. Am. Math. Soc., 361, 3793-3815 (2009) · Zbl 1178.35173 · doi:10.1090/S0002-9947-09-04875-2
[25] B, Symmetry results for functions yielding best constants in Sobolev-type inequalities, DCDS, 6, 683-690 (2000) · Zbl 1157.35342 · doi:10.3934/dcds.2000.6.683
[26] M, Symmetrization with equal Dirichlet integrals, SIAM J. Math. Anal., 13, 153-161 (1982) · Zbl 0484.35006 · doi:10.1137/0513011
[27] E. H. Lieb, M. Loss, Analysis, 2 Eds., Providence, RI: American Mathematical Society, 2001. · Zbl 0966.26002
[28] E. Makai, On the principal frequency of a membrane and the torsional rigidity of a beam, In: Studies in math. analysis and related topics, Stanford: Stanford Univ. Press, 1962,227-231.
[29] A, On the symmetry of extremals in the weight embedding theorem. Function theory and mathematical analysis, J. Math. Sci., 107, 3841-3859 (2001) · doi:10.1023/A:1012336127123
[30] F. Santambrogio, Optimal transport for applied mathematicians, Basel: Birkhäuser, 2015. · Zbl 1401.49002
[31] G, Two more inequalities between physical and geometrical quantities, J. Indian Math. Soc., 24, 413-419 (1960) · Zbl 0131.20203
[32] R. T. Rockafellar, Convex analysis, Princeton, N.J.: Princeton University Press, 1970. · Zbl 0193.18401
[33] G. Strang, \(L^1\) and \(L^\infty\) approximation of vector fields in the plane, In: North-Holland Mathematics Studies, 81 (1983), 273-288. · Zbl 0523.49014
[34] P, Variational problems with a \(p-\) homogeneous energy, Positivity, 6, 75-94 (2002) · Zbl 1003.49002 · doi:10.1023/A:1012088127719
[35] D, Dirichlet conditions in Poincaré-Sobolev inequalities: the sub-homogeneous case, Calc. Var., 58, 89 (2019) · Zbl 1412.35210 · doi:10.1007/s00526-019-1547-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.