×

Discrete traveling waves in a relay system of Mackey-Glass equations with two delays. (English. Russian original) Zbl 1496.34106

Theor. Math. Phys. 207, No. 3, 827-840 (2021); translation from Teor. Mat. Fiz. 207, No. 3, 489-504 (2021).
Consider a ring circuit of \(m\) identical Mackey-Glass generators of the form \[\dot{u}_{j}=-\beta u_{j}+\frac{\alpha\left(u_{j}(t-1)+u_{j-1}(t-\tau)\right)}{1+\left(u_{j}(t-1)+u_{j-1}(t-\tau)\right)^{\gamma}}, \quad u_{0} \equiv u_{m}, \quad j=1, \ldots, m\tag{1} \] with positive parameters \(\alpha,\beta,\gamma,\tau\). Letting \(\gamma \to \infty\) one obtains the limiting equation \[\dot{u}_{j}=-\beta u_{j}+\alpha\left(u_{j}(t-1)+u_{j-1}(t-\tau)\right) F\left(u_{j}(t-1)+u_{j-1}(t-\tau)\right), \quad u_{0} \equiv u_{m}, \quad j=1, \ldots, m \tag{2}\] with \[ F(u) := \lim _{\gamma \rightarrow+\infty} \frac{1}{1+u^{\gamma}}= \begin{cases}1, & 0<u<1, \\ 1 / 2, & u=1, \\ 0, & u>1.\end{cases} \] The motivation to study system (2) is twofold: on the one hand, \(\gamma\gg 1\) is a realistic assumption in applications, and on the other hand, equation (2) can be regarded as a relay circuit analogue of system (1).
The main result of the paper shows that for each positive integer \(m\geq 2\), there exists a range of values of the parameters such that for fixed \(\alpha, \beta,\tau\) and \(m\), there exists a discrete traveling wave solution of (2), that is, there is a \(\Delta>0\) for which system (2) has a periodic solution of the form \(u_j(t) = u_\ast (t + j\Delta)\).
The key observation is that discrete traveling wave solutions correspond to periodic solutions of the scalar version (i.e.\(m=1\)) of equation (2).
The proof is constructive: the exact formula for \(u_\ast\) is obtained.

MSC:

34K13 Periodic solutions to functional-differential equations
34K17 Transformation and reduction of functional-differential equations and systems, normal forms
92D25 Population dynamics (general)
34K39 Discontinuous functional-differential equations
Full Text: DOI

References:

[1] Preobrazhenskaya, M. M., A relay Mackey-Glass model with two delays, Theoret. and Math. Phys., 203, 524-534 (2020) · Zbl 1448.92070 · doi:10.1134/S004057792004008X
[2] Mackey, M. C.; Glass, L., Oscillation and chaos in physiological control systems, Science, 197, 287-289 (1977) · Zbl 1383.92036 · doi:10.1126/science.267326
[3] Glass, L.; Mackey, M., From Clocks to Chaos. The Rhythms of Life (1988), Princeton: Princeton Univ. Press, Princeton · Zbl 0705.92004 · doi:10.1515/9780691221793
[4] Junges, L.; Gallas, J. A. C., Intricate routes to chaos in the Mackey-Glass delayed feedback system, Phys. Lett. A, 376, 2109-2116 (2012) · Zbl 1266.93057 · doi:10.1016/j.physleta.2012.05.022
[5] Berezansky, L.; Braverman, E., Mackey-Glass equation with variable coefficients, Comput. Math. Appl., 51, 1-16 (2006) · Zbl 1101.34062 · doi:10.1016/j.camwa.2005.09.001
[6] Su, H.; Ding, X.; Li, W., Numerical bifurcation control of Mackey-Glass system, Appl. Math. Model., 35, 3460-3472 (2011) · Zbl 1221.93235 · doi:10.1016/j.apm.2011.01.009
[7] Liz, E.; Trofimchuk, E.; Trofimchuk, S., Mackey-Glass type delay differential equations near the boundary of absolute stability, J. Math. Anal. Appl., 275, 747-760 (2002) · Zbl 1022.34071 · doi:10.1016/S0022-247X(02)00416-X
[8] Wu, X.-M.; Li, J.-W.; Zhou, H.-Q., A necessary and sufficient condition for the existence of positive periodic solutions of a model of hematopoiesis, Comput. Math. Appl., 54, 840-849 (2007) · Zbl 1137.34333 · doi:10.1016/j.camwa.2007.03.004
[9] Kubyshkin, E. P.; Moryakova, A. R., Bifurcation of periodic solutions of the Mackey-Glass equation, Model. Anal. Inform. Sist., 23, 784-803 (2016) · doi:10.18255/1818-1015-2016-6-784-803
[10] Namajūnas, A.; Pyragas, K.; Tamaševičius, A., Stabilization of an unstable steady state in a Mackey-Glass system, Phys. Lett. A, 204, 255-262 (1995) · doi:10.1016/0375-9601(95)00480-Q
[11] Tateno, M.; Uchida, A., Nonlinear dynamics and chaos synchronization in Mackey-Glass electronic circuits with multiple time-delayed feedback, Nonlin. Theory Appl., IEICE, 3, 155-164 (2012) · doi:10.1587/nolta.3.155
[12] Grassberger, P.; Procaccia, I., Measuring the strangeness of strange attractors, Phys. D, 9, 189-208 (1983) · Zbl 0593.58024 · doi:10.1016/0167-2789(83)90298-1
[13] Amil, P.; Cabeza, C.; Marti, and A. C., Exact discrete-time implementation of the Mackey-Glass delayed model, IEEE Trans. on Circuits and Systems II: Express Briefs, 62, 681-685 (2015) · doi:10.1109/TCSII.2015.2415651
[14] Amil, P.; Cabeza, C.; Masoller, C.; Marti, A., Organization and identification of solutions in the time-delayed Mackey-Glass model, Chaos, 25 (2015) · Zbl 1374.94887 · doi:10.1063/1.4918593
[15] Shahverdiev, E. M.; Nuriev, R. A.; Hashimov, R. H.; Shore, K. A., Chaos synchronization between the Mackey-Glass systems with multiple time delays, Chaos, Solitons Fractals, 29, 854-861 (2006) · Zbl 1142.37330 · doi:10.1016/j.chaos.2005.08.128
[16] Glyzin, S. D.; Kolesov, A. Yu.; Rozov, N. Kh., An approach to modeling artificial gene networks, Theoret. and Math. Phys., 194, 471-490 (2018) · Zbl 1400.92185 · doi:10.1134/S0040577918030121
[17] Glyzin, S. D.; Kolesov, A. Yu.; Rozov, N. Kh., Quasi-stable structures in circular gene networks, Comput. Math. Math. Phys., 58, 659-679 (2018) · Zbl 1398.34066 · doi:10.1134/S0965542518050093
[18] Sano, S.; Uchida, A.; Yoshimori, S.; Roy, R., Dual synchronization of chaos in Mackey-Glass electronic circuits with time-delayed feedback, Phys. Rev. E, 75 (2007) · doi:10.1103/PhysRevE.75.016207
[19] Wan, A.; Wei, J., Bifurcation analysis of Mackey-Glass electronic circuits model with delayed feedback, Nonlinear Dynam., 57, 85-96 (2009) · Zbl 1176.78020 · doi:10.1007/s11071-008-9422-7
[20] Glyzin, S. D.; Kolesov, A. Yu.; Rozov, N. Kh., Discrete autowaves in neural systems, Comput. Math. Math. Phys., 52, 702-719 (2012) · Zbl 1267.92024 · doi:10.1134/S0965542512050090
[21] Horbelt, W.; Timmer, J.; Voss, H. U., Parameter estimation in nonlinear delayed feedback systems from noisy data, Phys. Lett. A, 299, 513-521 (2002) · Zbl 0996.37077 · doi:10.1016/S0375-9601(02)00748-X
[22] López-Caraballo, C. H.; Salfate, I.; Lazzús, J. A.; Rivera, M.; Palma-Chilla, L., Mackey-Glass noisy chaotic time series prediction by a swarm-optimized neural network, J. Phys.: Conf. Ser., 720 (2016)
[23] Zhao, J.; Li, Y.; Yu, X.; Zhang, X., Levenberg-Marquardt algorithm for Mackey-Glass chaotic time series prediction, Discrete Dyn. Nat. Soc., 2014 (2014) · Zbl 1419.62264
[24] Mackey, M. C.; Glass, L., Mackey-Glass equation, Scholarpedia, 5 (2010) · doi:10.4249/scholarpedia.6908
[25] Kolesov, A. Yu.; Kolesov, Yu. S., Relaxational oscillations in mathematical models of ecology, Proc. Steklov Inst. Math., 199, 1-126 (1995) · Zbl 0841.92031
[26] Kolesov, A. Yu.; Mishchenko, E. F.; Rozov, N. Kh., A modification of Hutchinson’s equation, Comput. Math. Math. Phys., 50, 1990-2002 (2010) · Zbl 1224.34229 · doi:10.1134/S0965542510120031
[27] Kashchenko, A. A., Multistability in a system of two coupled oscillators with delayed feedback, J. Differ. Equ., 266, 562-579 (2019) · Zbl 1410.34200 · doi:10.1016/j.jde.2018.07.050
[28] Kashchenko, S. A., Steady states of a delay differential equation of an insect population’s dynamics, Autom. Control Comput. Sci., 48, 445-457 (2015) · doi:10.3103/S0146411614070116
[29] Glyzin, S. D.; Preobrazhenskaia, M. M., Multistability and bursting in a pair of delay coupled oscillators with a relay nonlinearity, IFAC-Papers On Line, 52, 109-114 (2019) · doi:10.1016/j.ifacol.2019.12.215
[30] Glyzin, S. D.; Preobrazhenskaia, M. M., Two delay-coupled neurons with a relay nonlinearity, Advances in Neural Computation, Machine Learning, and Cognitive Research III, 856, 181-189 (2020)
[31] Kolesov, A. Yu.; Mishchenko, E. F.; Rozov, N. Kh., Relay with delay and its \(C^1\)-approximation, Proc. Steklov Inst. Math., 216, 119-146 (1997) · Zbl 0916.34057
[32] Glyzin, S. D.; Kolesov, A. Yu.; Rozov, N. Kh., The theory of nonclassical relaxation oscillations in singularly perturbed delay systems, Sb. Math., 205, 781-842 (2014) · Zbl 1300.34167 · doi:10.1070/SM2014v205n06ABEH004399
[33] Glyzin, S. D.; Kolesov, A. Yu.; Rozov, N. Kh., Self-excited relaxation oscillations in networks of impulse neurons, Russian Math. Surveys, 70, 383-452 (2015) · Zbl 1361.34093 · doi:10.1070/RM2015v070n03ABEH004951
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.