×

The existence of solutions for Sturm-Liouville differential equation with random impulses and boundary value problems. (English) Zbl 1496.34053

Summary: In this article, we consider the existence of solutions to the Sturm-Liouville differential equation with random impulses and boundary value problems. We first study the Green function of the Sturm-Liouville differential equation with random impulses. Then, we get the equivalent integral equation of the random impulsive differential equation. Based on this integral equation, we use Dhage’s fixed point theorem to prove the existence of solutions to the equation, and the theorem is extended to the general second order nonlinear random impulsive differential equations. Then we use the upper and lower solution method to give a monotonic iterative sequence of the generalized random impulsive Sturm-Liouville differential equations and prove that it is convergent. Finally, we give two concrete examples to verify the correctness of the results.

MSC:

34B24 Sturm-Liouville theory
34A37 Ordinary differential equations with impulses
34F05 Ordinary differential equations and systems with randomness
34B27 Green’s functions for ordinary differential equations
47N20 Applications of operator theory to differential and integral equations
34B15 Nonlinear boundary value problems for ordinary differential equations
34A45 Theoretical approximation of solutions to ordinary differential equations

References:

[1] Alsaedi, A.; Albideewi, A. F.; Ntouyas, S. K.; Ahmad, B., On Caputo-Riemann-Liouville type fractional integro-differential equations with multi-point sub-strip boundary conditions, Mathematics, 8, 1899-1913 (2020) · doi:10.3390/math8111899
[2] Anguraj, A.; Wu, S.; Vinodkumar, A., The existence and exponential stability of semilinear functional differential equations with random impulses under non-uniqueness, Nonlinear Anal., Theory Methods Appl., 74, 331-342 (2011) · Zbl 1202.35341 · doi:10.1016/j.na.2010.07.007
[3] Anokhin, A.; Berezansky, L.; Braverman, E., Exponential stability of linear delay impulsive differential equations, J. Math. Anal. Appl., 193, 923-941 (1995) · Zbl 0837.34076 · doi:10.1006/jmaa.1995.1275
[4] Bai, C., Antiperiodic boundary value problems for second-order impulsive ordinary differential equations, Bound. Value Probl., 2008 (2008) · Zbl 1167.34317 · doi:10.1155/2008/585378
[5] Cui, Y., Uniqueness of solution for boundary value problems for fractional differential equations, Appl. Math. Lett., 51, 48-54 (2016) · Zbl 1329.34005 · doi:10.1016/j.aml.2015.07.002
[6] Gowrisankar, M.; Mohankumar, P.; Vinodkumar, A., Stability results of random impulsive semilinear differential equations, Acta Math. Sci., 34, 1055-1071 (2014) · Zbl 1324.35201 · doi:10.1016/S0252-9602(14)60069-2
[7] Han, X.; Huang, J., The generalized Green’s function for boundary value problem of second order difference equation, J. Funct. Spaces, 2015 (2015) · Zbl 1326.39004
[8] Hua, H.; Cong, F.; Cheng, Y., Existence and uniqueness of solutions for periodic-integrable boundary value problem of second order differential equation, Bound. Value Probl., 2012 (2012) · Zbl 1281.34060 · doi:10.1186/1687-2770-2012-89
[9] Huang, J.; Li, Y., Hyers-Ulam stability of linear functional differential equations, J. Math. Anal. Appl., 426, 1192-1200 (2015) · Zbl 1319.34120 · doi:10.1016/j.jmaa.2015.02.018
[10] Ji, J.; Yang, B., Positive solutions for boundary value problems of second order difference equations and their computation, J. Math. Anal. Appl., 367, 409-415 (2010) · Zbl 1202.39009 · doi:10.1016/j.jmaa.2010.01.026
[11] Jin, F.; Yan, B., Positive solutions of singular initial-boundary value problems to second-order functional differential equations, Bound. Value Probl., 2008 (2008) · Zbl 1158.34044 · doi:10.1155/2008/457028
[12] Lakshmikantham, V.; Bainov, D.; Simeonov, P., Theory of Impulsive Differential Equations (1989), Singapore: World Scientific, Singapore · Zbl 0719.34002 · doi:10.1142/0906
[13] Li, Z.; Shu, X.; Xu, F., The existence of upper and lower solutions to second order random impulsive differential equation with boundary value problem, AIMS Math., 6, 6189-6210 (2020) · Zbl 1440.35178 · doi:10.3934/math.2020398
[14] Liang, J.; Liu, J.; Xiao, T., Periodic solutions of delay impulsive differential equations, Nonlinear Anal., Theory Methods Appl., 74, 6835-6842 (2011) · Zbl 1242.34134 · doi:10.1016/j.na.2011.07.008
[15] Liu, B.; Liu, X.; Teo, K.; Wang, Q., Razumikhin-type theorems on exponential stability of impulsive delay systems, J. Comput. Appl. Math., 71, 47-61 (2006) · Zbl 1128.34047
[16] Liu, J.; Wang, S.; Zhang, J., Multiple solutions for boundary value problems of second-order difference equations with resonance, J. Math. Anal. Appl., 374, 187-196 (2011) · Zbl 1209.39002 · doi:10.1016/j.jmaa.2010.09.025
[17] Liu, S.; Wang, J.; Shen, D.; O’Regan, D., Iterative learning control for differential inclusions of parabolic type with noninstantaneous impulses, Appl. Math. Comput., 350, 48-59 (2019) · Zbl 1428.93052 · doi:10.1007/s40314-019-0803-y
[18] Liu, X.; Wang, Q., The method of Lyapunov functionals and exponential stability of impulsive systems with time delay, Nonlinear Anal., Theory Methods Appl., 66, 1465-1484 (2007) · Zbl 1123.34065 · doi:10.1016/j.na.2006.02.004
[19] Liu, Y., Application of Avery-Peterson fixed point theorem to nonlinear boundary value problem of fractional differential equation with the Caputo’s derivative, Commun. Nonlinear Sci. Numer. Simul., 17, 4576-4584 (2012) · Zbl 1263.35216 · doi:10.1016/j.cnsns.2012.04.010
[20] Lu, Y.; Ma, R., Global structure of positive solutions for second-order difference equation with nonlinear boundary value condition, Adv. Differ. Equ., 2014 (2014) · Zbl 1417.34060 · doi:10.1186/1687-1847-2014-188
[21] Mahmudov, N. I.; Emin, S.; Bawanah, S., On the parametrization of Caputo-type fractional differential equations with two-point nonlinear boundary conditions, Mathematics, 7, 707-730 (2019) · doi:10.3390/math7080707
[22] Mukhtarov, O. S.; Yucel, M., A study of the eigenfunctions of the singular Sturm-Liouville problem using the analytical method and the decomposition technique, Mathematics, 8, 415-429 (2020) · doi:10.3390/math8030415
[23] Niu, P.; Shu, X.; Li, Y., The existence and Hyers-Ulam stability for second order random impulsive differential equations, Dyn. Syst. Appl., 3, 673-690 (2019)
[24] Pan, L.; Cao, J., Exponential stability of impulsive stochastic functional differential equations, J. Math. Anal. Appl., 382, 672-685 (2011) · Zbl 1222.60043 · doi:10.1016/j.jmaa.2011.04.084
[25] Radhakrishnan, B.; Tamilarasi, M., Existence of solutions for quasilinear random impulsive neutral differential evolution equation, Arab J. Math. Sci., 24, 235-246 (2018) · Zbl 1413.34253
[26] Rodrigo, M. R.; Thamwattana, N., A unified analytical approach to fixed and moving boundary problems for the heat equation, Mathematics, 9, 749-768 (2021) · doi:10.3390/math9070749
[27] Samoilenko, A.; Perestyuk, N., Impulsive Differential Equations (1995), Singapore: World Scientific, Singapore · Zbl 0837.34003 · doi:10.1142/2892
[28] Shen, J.; Yan, J., Razumikhin type stability theorems for impulsive functional differential equations, Nonlinear Anal., Theory Methods Appl., 33, 519-531 (1998) · Zbl 0933.34083 · doi:10.1016/S0362-546X(97)00565-8
[29] Shen, L.; Sun, J., Existence and uniqueness of mild solutions for nonlinear stochastic impulsive differential equation, Abstr. Appl. Anal., 2011 (2011) · Zbl 1231.60052 · doi:10.1155/2011/439724
[30] Shen, L.; Sun, J., Global existence of solutions for stochastic impulsive differential equations, Acta Math. Sin. Engl. Ser., 27, 773-780 (2011) · Zbl 1218.60052 · doi:10.1007/s10114-011-8650-9
[31] Shu, L.; Shu, X.; Zhu, Q.; Xu, F., Existence and exponential stability of mild solutions for second-order neutral stochastic functional differential equation with random impulses, J. Appl. Anal. Comput., 11, 59-80 (2021) · Zbl 07905105 · doi:10.11948/20190089
[32] Sun, J., Guo, D.: Functional methods for nonlinear ordinary differential equations; Shandong Science and Technology Press, 3-5
[33] Thaiprayoon, C.; Tariboon, J.; Ntouyas, S., Separated boundary value problems for second-order impulsive q-integro-difference equations, Adv. Differ. Equ., 2014 (2014) · Zbl 1419.39019 · doi:10.1186/1687-1847-2014-88
[34] Wang, J.; Luo, Z.; Shen, D., Iterative learning control for linear delay systems with deterministic and random impulses, J. Franklin Inst., 355, 2473-2497 (2018) · Zbl 1393.93118 · doi:10.1016/j.jfranklin.2018.01.013
[35] Wang, Q.; Liu, X., Impulsive stabilization of delay differential systems via the Lyapunov-Razumikhin method, Appl. Math. Lett., 20, 839-845 (2007) · Zbl 1159.34347 · doi:10.1016/j.aml.2006.08.016
[36] Wang, Y.; Li, Y.; Zhou, J., Solvability of boundary value problems for impulsive fractional differential equations via critical point theory, Mediterr. J. Math., 13, 4845-4866 (2016) · Zbl 1354.34026 · doi:10.1007/s00009-016-0779-4
[37] Wang, Y.; Zhang, M.; Zhao, W., Reconstruction for Sturm-Liouville operators with frozen argument for irrational cases, Appl. Math. Lett., 111 (2021) · Zbl 1524.34183 · doi:10.1016/j.aml.2020.106590
[38] Wu, X.; Niu, P.; Wei, G., An inverse eigenvalue problem for a nonlocal Sturm-Liouville operator, J. Math. Anal. Appl., 494 (2021) · Zbl 1479.34054 · doi:10.1016/j.jmaa.2020.124661
[39] Zhang, G., Lin, Y.: Functional analysis handout; Science and Technology Press, 17-18
[40] Zhang, S.; Jiang, W., The existence and exponential stability of random impulsive fractional differential equations, Adv. Differ. Equ., 2018 (2018) · Zbl 1448.34030 · doi:10.1186/s13662-018-1779-4
[41] Zhao, Y.; Chen, H.; Xu, C., Nontrivial solutions for impulsive fractional differential equations via Morse theory, Appl. Math. Comput., 307, 170-179 (2017) · Zbl 1411.34026
[42] Zhao, Z.; Liang, J., Existence of solutions to functional boundary value problem of second-order nonlinear differential equation, J. Math. Anal. Appl., 373, 614-634 (2011) · Zbl 1208.34020 · doi:10.1016/j.jmaa.2010.08.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.