×

The solution theory for the fractional hybrid \(q\)-difference equations. (English) Zbl 1496.34017


MSC:

34A08 Fractional ordinary differential equations
39A13 Difference equations, scaling (\(q\)-differences)
34D20 Stability of solutions to ordinary differential equations
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Rajković, P.; Marinković, S.; Stanković, M., Fractional integrals and derivatives in \(q\)-calculus, Appl. Anal. Discrete Math., 1, 311-323 (2007) · Zbl 1199.33013 · doi:10.2298/AADM0701311R
[2] Abdel-Gawad, H.; Aldailami, A., On \(q\)-dynamic equations modelling and complexity, Appl. Math. Model., 34, 697-709 (2010) · Zbl 1185.39004 · doi:10.1016/j.apm.2009.06.027
[3] Ferreira, R., Positive solutions for a class of boundary value problems with fractional \(q\)-differences, Comput. Math. Appl., 61, 367-373 (2011) · Zbl 1216.39013 · doi:10.1016/j.camwa.2010.11.012
[4] Annaby, M.; Mansour, Z., \(q\)-fractional Calculus and Equations (2012), New York: Springer, New York · Zbl 1267.26001 · doi:10.1007/978-3-642-30898-7
[5] Jarad, F.; Abdeljawad, T.; Baleanu, D., Stability of \(q\)-fractional non-autonomous systems, Nonlinear Anal. RWA, 14, 780-784 (2013) · Zbl 1258.34014 · doi:10.1016/j.nonrwa.2012.08.001
[6] Ahmad, B.; Nieto, J.; Alsaedi, A., Existence of solutions for nonlinear fractional \(q\)-difference integral equations with two fractional orders and nonlocal four-point boundary conditions, J. Franklin Inst., 351, 2890-2909 (2014) · Zbl 1372.45007 · doi:10.1016/j.jfranklin.2014.01.020
[7] Almeida, R.; Martins, N., Existence results for fractional \(q\)-difference equations of order \(\alpha \in [2,3]\) with three-point boundary conditions, Commun. Nonlinear Sci., 19, 1675-1685 (2014) · Zbl 1457.39003 · doi:10.1016/j.cnsns.2013.10.018
[8] Salahshour, S.; Ahmadian, A.; Chan, CS, Successive approximation method for Caputo \(q\)-fractional IVPs, Commun. Nonlinear Sci. Numer. Simul., 24, 153-158 (2015) · Zbl 1440.34011 · doi:10.1016/j.cnsns.2014.12.014
[9] Wang, G.; Sudsutad, W.; Zhang, L., Monotone iterative technique for a nonlinear fractional \(q\)-difference equation of Caputo type, Adv. Differ. Equ., 1, 211-222 (2016) · Zbl 1419.34216 · doi:10.1186/s13662-016-0938-8
[10] Ahmad, B.; Etemad, S.; Ettefagh, M., On the existence of solutions for fractional \(q\)-difference inclusions with \(q\)-antiperiodic boundary conditions, Bull. Math. Soc. Sci. Math. Roum., 59, 119-134 (2016) · Zbl 1374.39010
[11] Ma, K.; Sun, S., Finite-time stability of linear fractional time-delay \(q\)-difference dynamical system, J. Appl. Math. Comput., 57, 591-604 (2018) · Zbl 1398.39006 · doi:10.1007/s12190-017-1123-2
[12] Tang, Y.; Zhang, T., A remark on the \(q\)-fractional differential equations, Appl. Math. Comput., 350, 198-208 (2019) · Zbl 1428.34023
[13] Liang, Y.; Yang, H.; Li, H., Existence of positive solutions for the fractional \(q\)-difference boundary value problem, Adv. Differ. Equ., 2020, 416 (2020) · Zbl 1486.39007 · doi:10.1186/s13662-020-02849-w
[14] Zhang, T.; Guo, Q., The solution theory of the nonlinear \(q\)-fractional differential equations, Appl. Math. Lett., 104, 106282 (2020) · Zbl 1439.39004 · doi:10.1016/j.aml.2020.106282
[15] Boutiara, A.; Etemad, S.; Alzabut, J., On a nonlinear sequential four-point fractional \(q\)-difference equation involving \(q\)-integral operators in boundary conditions along with stability criteria, Adv. Differ. Equ., 2021, 367 (2021) · Zbl 1494.39005 · doi:10.1186/s13662-021-03525-3
[16] Sun, S.; Zhao, Y.; Han, Z., The existence of solutions for boundary value problem of fractional hybrid differential equations, Commun. Nonlinear Sci. Numer. Simulat., 17, 4961-4967 (2012) · Zbl 1352.34011 · doi:10.1016/j.cnsns.2012.06.001
[17] Dhage, BC; Jadhav, NS, Basic results in the theory of hybrid differential equations with linear perturbations of second type, Tamkang J. Math., 44, 171-186 (2013) · Zbl 1321.34074 · doi:10.5556/j.tkjm.44.2013.1086
[18] Lu, H.; Sun, S.; Yang, D., Theory of fractional hybrid differential equations with linear perturbations of second type, Bound. Value Probl., 2013, 1-16 (2013) · Zbl 1296.34025 · doi:10.1186/1687-2770-2013-23
[19] Bashiri, T.; Vaezpour, SM; Park, C., A coupled fixed point theorem and application to fractional hybrid differential problems, Fixed Point Theory Appl., 2016, 1-11 (2016) · Zbl 1505.34009 · doi:10.1186/s13663-016-0511-x
[20] Li, S.; Yin, H.; Li, L., The solution of a cooperative fractional hybrid differential system, Appl. Math. Lett., 91, 48-54 (2019) · Zbl 1408.34010 · doi:10.1016/j.aml.2018.11.008
[21] Zhao, Y., On the existence for a class of periodic boundary value problems of nonlinear fractional hybrid differential equations, Appl. Math. Lett., 121, 107368 (2021) · Zbl 1480.34105 · doi:10.1016/j.aml.2021.107368
[22] Boutiara, A.; Etemad, S.; Hussain, A., The generalized U-H and U-H stability and existence analysis of a coupled hybrid system of integro-differential IVPs involving \(\varphi \)-Caputo fractional operators, Adv. Differ. Equ., 2021, 95 (2021) · Zbl 1494.34023 · doi:10.1186/s13662-021-03253-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.