×

Super \(J\)-holomorphic curves: construction of the moduli space. (English) Zbl 1496.32043

Summary: Let \(M\) be a super Riemann surface with holomorphic distribution \({\mathcal{D}}\) and \(N\) a symplectic manifold with compatible almost complex structure \(J\). We call a map \(\Phi :M\rightarrow N\) a super \(J\)-holomorphic curve if its differential maps the almost complex structure on \({\mathcal{D}}\) to \(J\). Such a super \(J\)-holomorphic curve is a critical point for the superconformal action and satisfies a super differential equation of first order. Using component fields of this super differential equation and a transversality argument we construct the moduli space of super \(J\)-holomorphic curves as a smooth subsupermanifold of the space of maps \(M\rightarrow N\).

MSC:

32Q65 Pseudoholomorphic curves
32Q60 Almost complex manifolds
58C50 Analysis on supermanifolds or graded manifolds
58D27 Moduli problems for differential geometric structures
53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

References:

[1] Adamo, T.; Groechenig, M., Moduli stacks of maps for supermanifolds, Adv. Theor. Math. Phys., 17, 6, 1303-1342 (2013) · Zbl 1312.14039 · doi:10.4310/ATMP.2013.v17.n6.a3
[2] Behrend, K.; Manin, Yu, Stacks of stable maps and Gromov-Witten invariants, Duke Math. J., 85, 1-60 (1996) · Zbl 0872.14019 · doi:10.1215/S0012-7094-96-08501-4
[3] Brink, L.; Di Vecchia, P.; Howe, P., A locally supersymmetric and reparametrization invariant action for the spinning string, Phys. Lett. B, 65, 5, 471-474 (1976) · doi:10.1016/0370-2693(76)90445-7
[4] Bruzzo, U., Ruipérez, D.H.: The Supermoduli of SUSY curves with Ramond punctures. (2019) arXiv:1910.12236 [math.AG] · Zbl 1474.14072
[5] Candelas, P., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B, 359, 1, 21-74 (1991) · Zbl 1098.32506 · doi:10.1016/0550-3213(91)90292-6
[6] Carmeli, C., Caston, L., Fioresi, R.: Mathematical foundations of supersymmetry. Zür. Eur. Math. Soc. (2011). doi:10.4171/097 · Zbl 1226.58003
[7] Crane, L., Rabin, J.M.: Super Riemann surfaces: uniformization and Teichmüller theory. Commun. Math. Phys. 113(4), 601-623 (1988). doi:10.1007/BF01223239 · Zbl 0659.30039
[8] Deligne, P.: Lettre à Manin. Princeton, 1987. https://publications.ias.edu/sites/default/files/lettre-a-manin-1987-09-25.pdf (visited on 06/18/2019)
[9] Deligne, P., Freed, D.S.: Sign manifesto. In: Deligne P. et al. (eds.) Quantum Fields and Strings: A Course for Mathematicians, Vol. 1. 2 vols. American Mathematical Society, Providence, pp. 357-363 (1999). http://www.math.ias.edu/qft (visited on 04/24/2019) · Zbl 1170.58301
[10] Deligne, P., Morgan, J.W.: Notes on Supersymmetry. (following Joseph Bernstein). In: P. Deligne et al. (eds.) Quantum Fields and Strings: A Course for Mathematicians, Vol. 1. 2 vols. American Mathematical Society, Providence, pp. 41-98 (1999). http://www.math.ias.edu/qft (visited on 04/24/2019) · Zbl 0984.00503
[11] Deser, S., Zumino, B.: A complete action for the spinning string. Physics Letters B 65(4), 369-373 (1976). doi:10.1016/0370-2693(76)90245-8
[12] D’Hoker, E., Phong, D.H.: The geometry of string perturbation theory. Rev. Mod. Phys. 60(4) , 917-1065 (1988). doi:10.1103/RevModPhys.60.917
[13] Donagi, R., Witten, E.: Supermoduli space is not projected. In: R. Donagi et al. (eds.) String-Math 2012. String-Math 2012 (Universität Bonn, Bonn, Germany, July 16-June 21, 2012). Proceedings of Symposia in Pure Mathematics 90. Providence: American Mathematical Society, 2015, pp. 19-71. doi:10.1090/pspum/090/01525. arXiv:1304.7798 [hep-th] · Zbl 1356.14021
[14] Felder, G., Kazhdan, D., Polishchuk, A.: Regularity of the superstring supermeasure and the superperiod map (2019). arXiv:1905.12805 [math.AG] · Zbl 1484.32012
[15] Friedan, D.: Notes on string theory and two dimensional conformal field theory. In: Green, M. B. , Gross, D. J. (eds.) Unified String Theories. Proceedings. Workshop on Unified String Theories (Institute for Theoretical Physics, Santa Barbara, July 29- Aug. 16, 1985). World Scientific, Singapore, pp. 162-213 (1986) · Zbl 0648.53057
[16] Fulton, W.: Intersection Theory, 2nd edn., p. 470 pp. Springer, New York (1998). doi:10.1007/978-1-4612-1700-8 · Zbl 0885.14002
[17] Goldberg, SI; Kobayashi, S., Holomorphic bisectional curvature, J. Differ. Geom., 1, 3-4, 225-233 (1967) · Zbl 0169.53202 · doi:10.4310/jdg/1214428090
[18] Groeger, J.: Holomorphic supercurves and supersymmetric sigma models. J. Math. Phys. 52(12 )(2011). doi:10.1063/1.3665710 · Zbl 1273.81148
[19] Groeger, J., Compactness for holomorphic supercurves, Geometr. Ded., 170, 1, 347-384 (2014) · Zbl 1310.53074 · doi:10.1007/s10711-013-9885-7
[20] Groeger, J., Transversality for holomorphic supercurves, Math. Phys. Anal. Geom., 17, 3-4, 341-367 (2014) · Zbl 1432.53122 · doi:10.1007/s11040-014-9160-7
[21] Gromov, M., Pseudo holomorphic curves in symplectic manifolds, Invent. Math., 82, 2, 307-347 (1985) · Zbl 0592.53025 · doi:10.1007/BF01388806
[22] Hanisch, F.: A Supermanifold structure on Spaces of Morphisms between Supermanifolds. (2014). arXiv:1406.7484 [math.DG]
[23] Hori, K., Mirror Symmetry. Clay Mathematics Monographs 1, 929 (2003), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1044.14018
[24] Howe, PS, Super Weyl transformations in two dimensions, J. Phys. A Math. Gen., 12, 3, 393-402 (1979) · doi:10.1088/0305-4470/12/3/015
[25] Jost, J., Keßler, E., Tolksdorf, J.: Super Riemann surfaces, metrics and gravitinos. Adv. Theor. Math. Phys. 21(5), 1161-1187 (2017). doi:10.4310/ATMP.2017.v21.n5.a2. arXiv:1412.5146 [math-ph] · Zbl 1382.81159
[26] Keßler, E.: Supergeometry, Super Riemann Surfaces and the Superconformal Action Functional. Lecture Notes in Mathematics 2230. Springer, Berlin (2019). doi:10.1007/978-3-030-13758-8 · Zbl 1423.81006
[27] Kriegl, A.; Michor, PW, The Convenient Setting of Global Analysis. Mathematical surveys and monographs 53, 618 pp. (1997), Providence, R.I: American Mathematical Society, Providence, R.I · Zbl 0889.58001 · doi:10.1090/surv/053
[28] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. 2 vols. Wiley Classics Library. John Wiley & Sons Inc., New York (1996)
[29] Kontsevich, M.; Dijkgraaf, RH; Faber, CF; van der Geer, GBM, Enumeration of rational curves via torus actions, The Moduli Space of Curves, 335-368 (1995), Boston, MA: Birkhäuser Boston, Boston, MA · Zbl 0885.14028 · doi:10.1007/978-1-4612-4264-2_12
[30] Lawson, HB, Michelsohn, M.-L.: Spin Geometry. Princeton Mathematical Series 38. Princeton University Press, Princeton, New Jersey, 426 pp (1989) · Zbl 0688.57001
[31] LeBrun, C.; Rothstein, M., Moduli of super Riemann surfaces, Commun. Math. Phys., 117, 1, 159-176 (1988) · Zbl 0662.58008 · doi:10.1007/BF01228415
[32] Leites, DA, Introduction to the theory of supermanifolds, Russ. Math. Surveys, 35, 1, 1-64 (1980) · Zbl 0462.58002 · doi:10.1070/RM1980v035n01ABEH001545
[33] McDuff, D., Salamon, D.: J-holomorphic Curves and Symplectic Topology, 2nd edn. American Mathematical Society Colloquium Publications 52. American Mathematical Society, Providence, RI, 726 pp (2012) · Zbl 1272.53002
[34] Molotkov, V.: Infinite Dimensional and Colored Supermanifolds. In: Journal of Nonlinear Mathematical Physics 17 (Special Issue in Honor of F. A. Berezin 2010), pp. 375-446. doi:10.1142/S140292511000088X · Zbl 1362.58001
[35] Ruan, Y.; Tian, G., A mathematical theory of quantum cohomology, J. Differ. Geom., 42, 2, 259-367 (1995) · Zbl 0860.58005 · doi:10.4310/jdg/1214457234
[36] Sachse, C.: Global Analytic Approach to Super Teichmüller Spaces. PhD thesis. Universität Leipzig, (2009). arXiv:0902.3289 [math.AG] · Zbl 1147.32011
[37] Witten, E.: Two-dimensional gravity and intersection theory on moduli space. In: Lawson Jr., H. B., Yau, S.-T. (eds.) Proceedings of the Conference on Geometry and topology held at Harvard University, April 27-29, 1990 and Sponsored by Lehigh University. Surveys in Differential Geometry 1. International Press, Somerville, MA (1990). doi:10.4310/SDG.1990.v1.n1.a5 · Zbl 0757.53049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.