×

Algebraic \(\overline{\mathbb Q}\)-groups as abstract groups. (English) Zbl 1496.20001

Memoirs of the American Mathematical Society 1219. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-2923-2/print; 978-1-4704-4815-8/ebook). v, 104 p. (2018).
Publisher’s description: We analyze the abstract structure of algebraic groups over an algebraically closed field \(K\).
For \(K\) of characteristic zero and \(G\) a given connected affine algebraic \(\overline{\mathbb Q}\)-group, the main theorem describes all the affine algebraic \(\overline{\mathbb Q}\)-groups \(H\) such that the groups \(H(K)\) and \(G(K)\) are isomorphic as abstract groups. In the same time, it is shown that for any two connected algebraic \(\overline{\mathbb Q}\)-groups \(G\) and \(H\), the elementary equivalence of the pure groups \(G(K)\) and \(H(K)\) implies that they are abstractly isomorphic.
In the final chapter, we apply our results to characterize the connected algebraic groups all of whose abstract automorphisms are standard, when \(K\) is either \(\overline{\mathbb Q}\) or of positive characteristic. In characteristic zero, a fairly general criterion is exhibited.

MSC:

20-02 Research exposition (monographs, survey articles) pertaining to group theory
20F11 Groups of finite Morley rank
03C60 Model-theoretic algebra
14L17 Affine algebraic groups, hyperalgebra constructions
20E36 Automorphisms of infinite groups
20G15 Linear algebraic groups over arbitrary fields

References:

[1] Alt{\i}nel, Tuna; Borovik, Alexandre V.; Cherlin, Gregory, Simple groups of finite Morley rank, Mathematical Surveys and Monographs 145, xx+556 pp. (2008), American Mathematical Society, Providence, RI · Zbl 1160.20024 · doi:10.1090/surv/145
[2] C. Altseimer and A. Berkman, On quasi- and pseudounipotent groups of finite morley rank, Preprint.
[3] Baudisch, Andreas; Hils, Martin; Martin-Pizarro, Amador; Wagner, Frank O., Die b\`“ose Farbe, J. Inst. Math. Jussieu, 8, 3, 415-443 (2009) · Zbl 1179.03041 · doi:10.1017/S1474748008000091
[4] Borel, Armand; Tits, Jacques, Homomorphismes “abstraits” de groupes alg\'ebriques simples, Ann. of Math. (2), 97, 499-571 (1973) · Zbl 0272.14013
[5] Borovik, Alexandre; Nesin, Ali, Groups of finite Morley rank, Oxford Logic Guides 26, xviii+409 pp. (1994), The Clarendon Press, Oxford University Press, New York · Zbl 0816.20001
[6] Bunina, E. I., Elementary equivalence of Chevalley groups over fields, Fundam. Prikl. Mat.. J. Math. Sci. (N. Y.), 12 152, 2, 155-190 (2008) · Zbl 1161.20040 · doi:10.1007/s10958-008-9064-9
[7] Bunina, E. I., Elementary equivalence of Chevalley groups over local rings, Mat. Sb.. Sb. Math., 201 201, 3-4, 321-337 (2010) · Zbl 1201.20048 · doi:10.1070/SM2010v201n03ABEH004074
[8] Bunina, E. I.; Mikhalev, A. V., Elementary properties of linear and algebraic groups, J. Math. Sci. (New York), 110, 3, 2595-2659 (2002) · Zbl 0994.00018 · doi:10.1023/A:1015157631442
[9] Burdges, Jeffrey, A signalizer functor theorem for groups of finite Morley rank, J. Algebra, 274, 1, 215-229 (2004) · Zbl 1053.20029 · doi:10.1016/j.jalgebra.2003.08.015
[10] Burdges, Jeffrey, Sylow theory for \(p=0\) in solvable groups of finite Morley rank, J. Group Theory, 9, 4, 467-481 (2006) · Zbl 1105.20029 · doi:10.1515/JGT.2006.030
[11] Caprace, Pierre-Emmanuel, “Abstract” homomorphisms of split Kac-Moody groups, Mem. Amer. Math. Soc., 198, 924, xvi+84 pp. (2009) · Zbl 1162.22018 · doi:10.1090/memo/0924
[12] Caprace, Pierre-Emmanuel; M{\`“u}hlherr, Bernhard, Isomorphisms of Kac-Moody groups, Invent. Math., 161, 2, 361-388 (2005) · Zbl 1069.22008 · doi:10.1007/s00222-004-0430-z
[13] Caprace, Pierre-Emmanuel; M{\`“u}hlherr, Bernhard, Isomorphisms of Kac-Moody groups which preserve bounded subgroups, Adv. Math., 206, 1, 250-278 (2006) · Zbl 1152.20029 · doi:10.1016/j.aim.2005.08.008
[14] Cherlin, Gregory, Good tori in groups of finite Morley rank, J. Group Theory, 8, 5, 613-621 (2005) · Zbl 1083.20026 · doi:10.1515/jgth.2005.8.5.613
[15] Dieudonn{\'e}, Jean, On the automorphisms of the classical groups. With a supplement by Loo-Keng Hua, Mem. Amer. Math. Soc.,, No. 2, vi+122 pp. (1951) · Zbl 0042.25603
[16] Enochs, Kathryn; Nesin, Ali, On \(2\)-step solvable groups of finite Morley rank, Proc. Amer. Math. Soc., 110, 2, 479-489 (1990) · Zbl 0725.03021 · doi:10.2307/2048092
[17] Fr{\'e}con, Olivier, Around unipotence in groups of finite Morley rank, J. Group Theory, 9, 3, 341-359 (2006) · Zbl 1154.20029 · doi:10.1515/JGT.2006.023
[18] Fr{\'e}con, Olivier, Conjugacy of Carter subgroups in groups of finite Morley rank, J. Math. Log., 8, 1, 41-92 (2008) · Zbl 1194.20033 · doi:10.1142/S0219061308000713
[19] Fr{\'e}con, Olivier, Groupes g\'eom\'etriques de rang de Morley fini, J. Inst. Math. Jussieu, 7, 4, 751-792 (2008) · Zbl 1178.03044 · doi:10.1017/S1474748008000212
[20] Fr{\'e}con, Olivier, Pseudo-tori and subtame groups of finite Morley rank, J. Group Theory, 12, 2, 305-315 (2009) · Zbl 1186.20025 · doi:10.1515/JGT.2008.079
[21] Fr{\'e}con, Olivier; Jaligot, Eric, Conjugacy in groups of finite Morley rank. Model theory with applications to algebra and analysis. Vol. 2, London Math. Soc. Lecture Note Ser. 350, 1-58 (2008), Cambridge Univ. Press, Cambridge · Zbl 1173.03033 · doi:10.1017/CBO9780511735219.002
[22] Hochschild, G.; Mostow, G. D., Automorphisms of affine algebraic groups, J. Algebra, 13, 535-543 (1969) · Zbl 0242.20047
[23] Hrushovski, Ehud; Zilber, Boris, Zariski geometries, J. Amer. Math. Soc., 9, 1, 1-56 (1996) · Zbl 0843.03020 · doi:10.1090/S0894-0347-96-00180-4
[24] Humphreys, James E., Linear algebraic groups, xiv+247 pp. (1975), Springer-Verlag, New York-Heidelberg · Zbl 0325.20039
[25] Lifschitz, L.; Rapinchuk, A., On abstract homomorphisms of Chevalley groups with nonreductive image. I, J. Algebra, 242, 1, 374-399 (2001) · Zbl 0987.20025 · doi:10.1006/jabr.2001.8795
[26] Mal{\cprime}cev, A. I., The elementary properties of linear groups. Certain Problems in Mathematics and Mechanics (In Honor of M. A. Lavrent\cprime ev) (Russian), 110-132 (1961), Izdat. Sibirsk. Otdel. Akad. Nauk SSSR, Novosibirsk · Zbl 0121.24306
[27] Marker, David, Model theory, Graduate Texts in Mathematics 217, viii+342 pp. (2002), Springer-Verlag, New York · Zbl 1003.03034
[28] Poizat, Bruno, Groupes stables, Nur al-Mantiq wal-Ma\rasp rifah [Light of Logic and Knowledge], 2, vi+218 pp. (1987), Bruno Poizat, Lyon · Zbl 0626.03025
[29] Ponomar{\`“e}v, K. N., Abstract isomorphisms of quasiminimal groups, Algebra i Logika. Algebra and Logic, 35 35, 5, 319-329 (1996) · Zbl 0976.20031 · doi:10.1007/BF02367357
[30] Rabinovich, E. D., Definability of a field in sufficiently rich incidence systems, QMW Maths Notes 14, xvi+97 pp. (1993), Queen Mary and Westfield College, School of Mathematical Sciences, London
[31] Rosenlicht, Maxwell, Some basic theorems on algebraic groups, Amer. J. Math., 78, 401-443 (1956) · Zbl 0073.37601
[32] Schreier, O.; Van der WAERDEN, B. L., Die Automorphismon der projektiven Gruppen, Abh. Math. Sem. Univ. Hamburg, 6, 1, 303-322 (1928) · JFM 54.0149.02 · doi:10.1007/BF02940620
[33] Sharomet, A. A., Abstract isomorphisms of solvable algebraic groups, Vestnik Beloruss. Gos. Univ. Ser. I, 1, 63-65 (1984) · Zbl 0596.20032
[34] Steinberg, Robert, Lectures on Chevalley groups, iii+277 pp. (1968), Yale University, New Haven, Conn. · Zbl 1196.22001
[35] Steinberg, Robert, Abstract homomorphisms of simple algebraic groups (after A. Borel and J. Tits). S\'eminaire Bourbaki, 25\`“eme ann\'”ee (1972/1973), Exp. No. 435, 307-326. Lecture Notes in Math., Vol. 383 (1974), Springer, Berlin · Zbl 0294.20040
[36] Tits, J., Homorphismes “abstraits” de groupes de Lie. Symposia Mathematica, Vol. XIII, Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972, 479-499 (1974), Academic Press, London · Zbl 0291.22009
[37] Zil{\cprime}ber, B. I., Some model theory of simple algebraic groups over algebraically closed fields, Colloq. Math., 48, 2, 173-180 (1984) · Zbl 0567.20030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.