×

Global dynamical analysis of H5 subtype avian influenza model. (English) Zbl 1495.92077

Summary: In order to study the comprehensive influence of factors such as contact between resident birds and poultry, poultry recruitment, environment and other factors on the transmission and control of H5 subtype avian influenza virus, a dynamic model of resident birds and poultry is developed. First, the basic reproduction number \(R_0\) is obtained. When \(R_0>1\), the dynamic model have a unique positive equilibrium and the disease persisted. Second, the Lyapunov functions is constructed to determine the global stability of the disease-free equilibrium and the endemic equilibrium. The results of numerical simulation show that regular disinfection and sterilization can increase the mortality of virus and effectively prevent the occurrence of epidemic situation. Although closing the live poultry trading market is not the main measure to control the epidemic, but it can control the epidemic to a lower level. Therefore, the regular closure of trading markets and sterilization can prevent and control the spread of the epidemic.

MSC:

92D30 Epidemiology
34A34 Nonlinear ordinary differential equations and systems
Full Text: DOI

References:

[1] Amendola, A.et al., Is avian influenza virus A (H5N1) a real threat to human health?J. Prev. Med. Hyg.52(3) (2011) 107-110.
[2] Van der Goot, J. A.et al., Comparison of the transmission characteristics of low and high pathogenicity avian influenza A virus (H5N2), Epidemiol. Infect.131(2) (2003) 1003-1013, https://doi.org/10.1017/s0950268803001067.
[3] Shirvani, E.et al., Contributions of HA1 and HA2 subunits of highly pathogenic avian influenza virus in induction of neutralizing antibodies and protection in chickens, Front. Microbiol.11 (2020) 1085, https://doi.org/10.3389/fmicb.2020.01085.
[4] Vijaykrishna, D.et al., Evolutionary dynamics and emergence of panzootic H5N1 influenza viruses, PLoS Pathog.4(9) (2008) e1000161, https://doi.org/10.1371/ journal.ppat.1000161.
[5] Reperant, L. A.et al., Spatial and temporal association of outbreaks of H5N1 influenza virus infection in wild birds with the \(0^{\text{o}}C\) isotherm, PLoS Pathog.6(4) (2010) e1000854, https://doi.org/10.1371/journal.ppat.1000854.
[6] Jiang, W. M.et al., Molecular epidemiological surveys of H5 subtype highly pathogenic avian influenza viruses in poultry in China during 2007-2009, J. Gen. Virol.91(10) (2010) 2491-2496, https://doi.org/10.1099/vir.0.023168-0.
[7] Smith, H. and Waltman, P., The Theory of the Chemostat (Cambridge University Press, 1995), https://doi.org/10.1017/CBO9780511530043. · Zbl 0860.92031
[8] Van den Driessche, P. and Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci.180 (2002) 29-48. · Zbl 1015.92036
[9] Lasalle, J. P., The stability of dynamical systems, in Regional Conf. Ser. Appl. Math. Philadelphia, Vol. 21 (Society for Industrial and Applied Mathematics, 1976), pp. 418-420. · Zbl 0364.93002
[10] Zhao, X. Q and Jing, Z. J., Global asymptotic behavior in some cooperative systems of functional differential equations, Can. Appl. Math. Q.4 (1996) 421-444. · Zbl 0888.34038
[11] Han, Y.et al., A survey of avian influenza in tree sparrows in China in 2011, PLoS One7(4) (2012) e33092, https://doi.org/10.1371/journal.pone.0033092.
[12] Ministry of agriculture and rural affiairs of the People’s Republic of China, Official Veterinary Bulletin (2019), http://www.moa.gov.cn/gk/sygb/.
[13] Chang, K. C., Pearson, K. and Zhang, T., Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci.6(2) (2008) 507-520. · Zbl 1147.15006
[14] Lajmanovich, A. and York, J. A., A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci.28 (1976) 221-236. · Zbl 0344.92016
[15] Bhatia, N. P. and Szegö, G. P., Dynamical Systems: Stability Theory and Applications (Springer, 2006). · Zbl 0155.42201
[16] Guan, Y.et al., Molecular epidemiology of H5N1 avian influenza, Rev. Sci. Tech.28(1) (2009) 39-47, https://doi.org/10.20506/rst.28.1.1868.
[17] Horn, R. and Johnson, C., Matrix Analysis (Cambridge University Press, Cambridge, 2012), https://doi.org/10.1017/9781139020411.
[18] Smith, H. and Waltman, P., The Theory of the Chemostat: Dynamics of Microbial Competition (Cambridge University Press, 1995), https://doi.org/10.1017/CBO9780511530043. · Zbl 0860.92031
[19] Lucchetti, J., Roy, M. and Martcheva, M., An avian influenza model and its fit to human avian influenza cases, in Advances in Disease Epidemiology, ed. Mukandavire, Z. (Nova Science Publishers, New York. 2009), pp. 1-30.
[20] Marino, S.et al., A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol.254(1) (2008) 178-196, https://doi.org/10.1016/j.jtbi.2008. 04.011. · Zbl 1400.92013
[21] Claas, E. C. J.et al., Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus, Lancet351(9101) (1998) 472-477, https://doi.org/10.1016/S0140-6736(97)11212-0.
[22] Suarez, D. L.et al., Comparisons of highly virulent H5N1 influenza viruses isolated from humans and chickens from Hong Kong, J. Virol.72 (1998) 6678-6688.
[23] Liu, S.et al., Control of avian influenza in China: Strategies and lessons, Transbound. Emerg. Dis.67(4) (2020) 1463-1471, https://doi.org/10.1111/tbed.13515.
[24] Blower, S. and Dowlatabadi, H., Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example, Int. Stat. Rev.62 (1994) 229-243. · Zbl 0825.62860
[25] Ruan, S. G. and Wu, J. H., Modeling spatial spread of communicable diseases involving animal hosts, in Spatial Ecology, eds. Cantrell, S., Cosner, C. and Ruan, S. (Chapman & Hall/CRC, Boca Raton, FL, 2009), pp. 293-316, https://doi.org/10.1201/9781420059861. · Zbl 1183.92074
[26] Hassan, M. M.et al., Prevalence and diversity of avian influenza virus hemagglutinin sero-subtypes in poultry and wild birds in Bangladesh, Vet. Sci.7(2) (2020) 73, https://doi.org/10.3390/vetsci7020073.
[27] Xing, Y.et al., Assessing reappearance factors of H7N9 avian influenza in China, Appl. Math. Comput.309 (2017) 192-204, https://doi.org/10.1016/j.amc.2017.04.007. · Zbl 1411.92297
[28] Gilbert, M.et al., Mapping H5N1 highly pathogenic avian influenza risk in Southeast Asia, Proc. Natl. Acad. Sci. USA105(12) (2008) 4769-4774, https://doi.org/10.1073/pnas.0710581105.
[29] Gilbert, M.et al., Flying over an infected landscape: Distribution of highly pathogenic avian influenza H5N1 risk in South Asia and satellite tracking of wild waterfowl, EcoHealth7(4) (2010) 448-458, https://doi.org/10.1007/s10393-010-0672-8.
[30] Truscott, J.et al., Control of a highly pathogenic H5N1 avian influenza outbreak in the GB poultry flock, Proc. R. Soc. B274 (2007) 2287-2295, https://doi.org/10.1098/rspb.2007.0542.
[31] Sharkey, K. J.et al., Epidemiological consequences of an incursion of highly pathogenic H5N1 avian influenza into the British poultry flock, Proc. R. Soc. B275 (2008) 19-28, https://doi.org/10.1098/rspb.2007.1100.
[32] Minh, P. Q.et al., Spatio-temporal analyses of highly pathogenic avian influenza H5N1 outbreaks in the Mekong River Delta, Vietnam, 2009, Spat. Spatio-temporal Epidemiol.2(1) (2011) 49-57, https://doi.org/10.1016/j.sste.2010.11.001.
[33] Li, X. W., Li, X. Y. and Xu, B., Phylogeography of highly pathogenic H5 avian influenza viruses in China, Virol. Sin.35 (2020) 548-555, https://doi.org/10.1007/s12250-020-00193-7.
[34] National Bureau of Statistics of China 2019, China Animal Husbandry Yearbook, http://www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm.
[35] Bourouiba, L.et al., The interaction of migratory birds and domestic poultry and its role in sustaining avian influenza, SIAM J. Appl. Math.71(2) (2011) 487-516. · Zbl 1231.34146
[36] Tuncer, N. and Martcheva, M., Modeling seasonality in avian influenza H5N1, J. Biol. Syst.21(4) (2013) 1-30. · Zbl 1342.92285
[37] Ye, X. Y. and Xu, C. J., A fractional order epidemic model and simulation for avian influenza dynamics, Math. Meth. Appl. Sci.42 (2019) 4765-4779, https://doi.org/10.1002/mma.5690. · Zbl 1425.92204
[38] Chong, N. S. and Smith, R. J., Modeling avian influenza using filippov systems to determine culling of infected birds and quarantine, Nonlinear Anal. Real World Appl.24 (2015) 196-218. · Zbl 1330.34075
[39] Allee, W. C., Animal Aggregation: A Study in General Sociology (University of Chicago Press, Chicago, 1931).
[40] Avian influenza, World Health Organization (2014).
[41] Wang, X. S. and Wu, J., Periodic systems of delay differential equations and avian influenza dynamics, J. Math. Sci.201 (2014) 693-704. · Zbl 1314.34165
[42] Zhang, J.et al., Determination of original infection source of H7N9 avian influenza by dynamical model, Sci Rep.4 (2014) 4846, https://doi.org/10.1038/srep04846.
[43] Hou, Q.et al., Modeling the transmission dynamics of sheep brucellosis in Inner Mongolia Autonomous Region, China, Math. Biosci.242(1) (2013) 51-8, https://doi.org/10.1016/j.mbs.2012.11.012. · Zbl 1257.92032
[44] Tuncer, N.et al., Dynamics of low and high pathogenic avian influenza in wild and domestic bird populations, J. Biol. Dyn.10 (2016) 104-39, https://doi.org/10.1080/17513758.2015.1111449. · Zbl 1448.92346
[45] International Food Safety Authorities Network (INFOSAN), Highly pathogenic H5N1 avian influenza outbreaks in poultry and in humans: Food safety implications (World Health Organization, 2005), https://www.who.int/foodsafety.
[46] Sharma, S. and Samanta, G. P., Stability analysis and optimal control of an epidemic model with vaccination, Int. J. Biomath.8(3) (2015) 1550030, https://doi.org/10.1142/S1793524515500308. · Zbl 1314.34107
[47] Sharma, S.et al., Stability analysis and optimal control of avian influenza virus A with time delays, Int. J. Dyn. Control6 (2018) 1351-1366, https://doi.org/10.1007/s40435-017-0379-6.
[48] Samanta, G. P., Permanence and extinction for a nonautonomous avian-human influenza epidemic model with distributed time delay, Math. Comput. Model.52 (2010) 1794-1811, https://doi.org/10.1016/j.mcm.2010.07.006. · Zbl 1205.34095
[49] Samanta, G. P., Permanence and extinction of a nonautonomous stage-structured epidemic model with distributed time delay, J. Biol. Syst.18(2) (2010) 377-398, https://doi.org/10.1142/S0218339010003330. · Zbl 1342.92279
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.