×

Does dissipative anomaly hold for compressible turbulence? (English) Zbl 1495.76058

Summary: We systematically study dissipative anomaly in compressible turbulence using a direct numerical simulations (DNS) database spanning a large parameter space, and show that the classical incompressible scaling does not hold for the total dissipation field. We assess the scaling for the solenoidal and dilatational parts separately. The solenoidal dissipation obeys the same scaling as incompressible turbulence when rescaled on solenoidal variables. We propose new scaling laws for total dissipation that predict the transition between regimes dominated by the solenoidal and dilatational components, and confirm them by the DNS data. An analysis of dilatational dissipation shows that dissipative anomaly may hold if properly scaled for certain regimes; on this empirical basis, we propose a new criterion for the energy cascade in the dilatational component.

MSC:

76F50 Compressibility effects in turbulence
76F65 Direct numerical and large eddy simulation of turbulence
Full Text: DOI

References:

[1] Aluie, H.2011Compressible turbulence: the cascade and its locality. Phys. Rev. Lett.106 (17), 174502.
[2] Aluie, H., Li, S. & Li, H.2012Conservative cascade of kinetic energy in compressible turbulence. Astrophys. J. Lett.751 (2), L29.
[3] Batchelor, G.K.1953The Theory of Homogeneous Turbulence. Cambridge University Press. · Zbl 0053.14404
[4] Bos, W.J.T., Shao, L. & Bertoglio, J.P.2007Spectral imbalance and the normalized dissipation rate of turbulence. Phys. Fluids19 (4), 045101. · Zbl 1146.76331
[5] Chen, S., Wang, J., Li, H., Wan, M. & Chen, S.2018Spectra and Mach number scaling in compressible homogeneous shear turbulence. Phys. Fluids30 (6), 065109.
[6] Doering, C.R. & Foias, C.2002Energy dissipation in body-forced turbulence. J. Fluid Mech.467, 289-306. · Zbl 1029.76025
[7] Donzis, D.A. & Jagannathan, S.2013aFluctuations of thermodynamic variables in stationary compressible turbulence. J. Fluid Mech.733, 221-244. · Zbl 1294.76183
[8] Donzis, D.A. & Jagannathan, S.2013bOn the relation between small-scale intermittency and shocks in turbulent flows. Procedia IUTAM9, 3-15.
[9] Donzis, D.A. & John, J.P.2020Universality and scaling in homogeneous compressible turbulence. Phys. Rev. Fluids5, 084609.
[10] Donzis, D.A., Sreenivasan, K.R. & Yeung, P.K.2005Scalar dissipation rate and dissipative anomaly in isotropic turbulence. J. Fluid Mech.532, 199-216. · Zbl 1125.76346
[11] Donzis, D.A., Sreenivasan, K.R. & Yeung, P.K.2010The Batchelor spectrum for mixing of passive scalars in isotropic turbulence. Flow Turbul. Combust.85, 549-566. · Zbl 1410.76085
[12] Eswaran, V. & Pope, S.B.1988An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids16, 257-278. · Zbl 0662.76069
[13] Eyink, G.L. & Drivas, T.D.2018Cascades and dissipative anomalies in compressible fluid turbulence. Phys. Rev. X8, 011022.
[14] Federrath, C. & Klessen, R.S.2012The star formation rate of turbulent magnetized clouds: comparing theory, simulations, and observations. Astrophys. J.761 (2), 156.
[15] Federrath, C., Rathborne, J.M., Longmore, S.N., Kruijssen, J.M.D., Bally, J., Contreras, Y., Crocker, R.M., Garay, G., Jackson, J.M., Testi, L., et al.2016The link between turbulence, magnetic fields, filaments, and star formation in the central molecular zone cloud \(\text{G}0.253+0.016\). Astrophys. J.832 (2), 143.
[16] Jagannathan, S. & Donzis, D.A.2012 Massively parallel direct numerical simulations of forced compressible turbulence: a hybrid MPI/OpenMP approach. In Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment, p. 23.
[17] Jagannathan, S. & Donzis, D.A.2016Reynolds and Mach number scaling in solenoidally-forced compressible turbulence using high-resolution direct numerical simulations. J. Fluid Mech.789, 669-707.
[18] Jin, K., Salim, D.M., Federrath, C., Tasker, E.J., Habe, A. & Kainulainen, J.T.2017On the effective turbulence driving mode of molecular clouds formed in disc galaxies. Mon. Not. R. Astron. Soc.469 (1), 383-393.
[19] John, J.P., Donzis, D.A & Sreenivasan, K.R.2019Solenoidal scaling laws for compressible mixing. Phys. Rev. Lett.123 (22), 224501.
[20] John, J.P., Donzis, D.A. & Sreenivasan, K.R.2020Compressibility effects on the scalar dissipation rate. Combust. Sci. Technol.192 (7), 1320-1333.
[21] Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K. & Uno, A.2003Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids15, L21-L24. · Zbl 1185.76191
[22] Kolmogorov, A.N.1941aLocal structure of turbulence in an incompressible fluid for very large Reynolds numbers. Dokl. Akad. Nauk. SSSR30, 299-303.
[23] Kolmogorov, A.N.1941b On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid. In Doklady Akademii Nauk SSSR, vol. 31, pp. 538-540. · Zbl 0026.17001
[24] Mccomb, W.D., Berera, A., Salewski, M. & Yoffe, S.2010Taylor’s (1935) dissipation surrogate reinterpreted. Phys. Fluids22 (6), 061704. · Zbl 1190.76088
[25] Monin, A.S. & Yaglom, A.M.1975Statistical Fluid Mechanics, II. MIT Press.
[26] Onsager, L.1949Statistical hydrodynamics. Il Nuovo Cimento (1943-1954)6 (2), 279-287.
[27] Orkisz, J.H., Pety, J., Gerin, M., Bron, E., Guzmán, V.V., Bardeau, S., Goicoechea, J.R., Gratier, P., Le Petit, F., Levrier, F., et al.2017Turbulence and star formation efficiency in molecular clouds: solenoidal versus compressive motions in Orion B. Astron. Astrophys.599, A99.
[28] Pearson, B., Krogstad, P.Å. & Van De Water, W.2002Measurements of the turbulent energy dissipation rate. Phys. Fluids14 (3), 1288-1290.
[29] Pearson, B.R., Yousef, T.A., Haugen, N.E.L., Brandenburg, A. & Krogstad, P.-Å.2004Delayed correlation between turbulent energy injection and dissipation. Phys. Rev. E70 (5), 056301.
[30] Sarkar, S., Erlebacher, G., Hussaini, M.Y. & Kreiss, H.O.1991The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech.227, 473-493. · Zbl 0721.76037
[31] Sreenivasan, K.R.1984On the scaling of the turbulence energy-dissipation rate. Phys. Fluids27, 1048-1051.
[32] Sreenivasan, K.R.1998An update on the energy dissipation rate in isotropic turbulence. Phys. Fluids10, 528-529. · Zbl 1185.76674
[33] Taylor, G.I.1935Statistical theory of turbulence. Proc. R. Soc. Lond. A151, 421-444. · JFM 61.0926.02
[34] Valente, P.C. & Vassilicos, J.C.2011The decay of turbulence generated by a class of multiscale grids. J. Fluid Mech.687, 300-340. · Zbl 1241.76050
[35] Vassilicos, J.C.2015Dissipation in turbulent flows. Ann. Rev. Fluid Mech.47, 95-114.
[36] Wang, J., Wan, M., Chen, S. & Chen, S.2018Kinetic energy transfer in compressible isotropic turbulence. J. Fluid Mech.841, 581-613. · Zbl 1419.76252
[37] Wang, J., Wang, L.-P., Xiao, Z., Shi, Y. & Chen, S.2010A hybrid numerical simulation of isotropic compressible turbulence. J. Comput. Phys.229, 5257-5279. · Zbl 1346.76114
[38] Wang, J., Yang, Y., Shi, Y., Xiao, Z., He, X.T. & Chen, S.2013Cascade of kinetic energy in three-dimensional compressible turbulence. Phy. Rev. Lett110 (21), 214505.
[39] Wang, L.P., Chen, S., Brasseur, J.G. & Wyngaard, J.C.1996Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. 1. Velocity field. J. Fluid Mech.309, 113-156. · Zbl 0860.76037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.