×

Three new approaches for solving a class of strongly nonlinear two-point boundary value problems. (English) Zbl 1495.65122

Summary: Three new and applicable approaches based on quasi-linearization technique, wavelet-homotopy analysis method, spectral methods, and converting two-point boundary value problem to Fredholm-Urysohn integral equation are proposed for solving a special case of strongly nonlinear two-point boundary value problems, namely Troesch problem. A quasi-linearization technique is utilized to reduce the nonlinear boundary value problem to a sequence of linear equations in the first method. Second method is devoted to applying generalized Coiflet scaling functions based on the homotopy analysis method for approximating the numerical solution of Troesch equation. In the third method we use an interesting technique to convert the boundary value problem to Urysohn-Fredholm integral equation of the second kind; afterwards generalized Coiflet scaling functions and Simpson quadrature are employed for solving the obtained integral equation. Introduced methods are new and computationally attractive, and applications are demonstrated through illustrative examples. Comparing the results of the presented methods with the results of some other existing methods for solving this kind of equations implies the high accuracy and efficiency of the suggested schemes.

MSC:

65L10 Numerical solution of boundary value problems involving ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems

References:

[1] Lang, J.; Walter, A., A finite element method adaptive in space and time for nonlinear reaction-diffusion systems, Impact Comput. Sci. Eng., 4, 4, 269-314 (1992) · Zbl 0796.65104 · doi:10.1016/0899-8248(92)90004-R
[2] Weibel, E. S., On the confinement of a plasma by magnetostatic fields, Phys. Fluids, 2, 1, 52-56 (1959) · doi:10.1063/1.1724391
[3] Chiou, J. P.; Na, T. Y., On the solution of Troesch’s nonlinear two-point boundary value problem using an initial value method, J. Comput. Phys., 19, 311-316 (1975) · Zbl 0318.65036 · doi:10.1016/0021-9991(75)90080-7
[4] Feng, X.; Mei, L.; He, G., An efficient algorithm for solving Troesch’s problem, Appl. Math. Comput., 189, 500-507 (2007) · Zbl 1122.65373
[5] Roberts, S. M.; Shipman, J. S., On the closed form solution of Troesch’s problem, J. Comput. Phys., 21, 291-304 (1976) · Zbl 0334.65062 · doi:10.1016/0021-9991(76)90026-7
[6] Troesch, B.A.: Intrinsic difficulties in the numerical solution of a boundary value problem. Internal Report NN-142, TRW Inc., Redondo Beach, California (1960)
[7] Yang, C.; Hou, J., Chebyshev wavelets method for solving Bratu’s problem, Bound. Value Probl., 2013 (2013) · Zbl 1296.65105 · doi:10.1186/1687-2770-2013-142
[8] El Hajaji, A.; Hilal, K.; Jalila, E. G.; Mhamed, E. M., New numerical scheme for solving Troesch’ problem, Math. Theory Model., 4, 2, 65-72 (2014)
[9] Secer, A.; Kurulay, M.; Bayram, M.; Akinlar, M. A., An efficient computer application of the sinc-Galerkin approximation for nonlinear boundary value problems, Bound. Value Probl., 2012 (2012) · Zbl 1282.65087 · doi:10.1186/1687-2770-2012-117
[10] Caglar, H.; Caglar, N.; Ozer, M., B-spline solution and the chaotic dynamics of Troesch’s problem, Acta Phys. Pol. A, 125, 2, 554-559 (2014) · doi:10.12693/APhysPolA.125.554
[11] Khuri, S. A., A numerical algorithm for solving the Troesch’s problem, Int. J. Comput. Math., 80, 4, 493-498 (2003) · Zbl 1022.65084 · doi:10.1080/0020716022000009228
[12] Inc, M.; Akgul, A., The reproducing kernel Hilbert space method for solving Troesch’s problem, J. Assoc. Arab Univ. Basic Appl. Sci., 14, 19-27 (2013)
[13] Nabati, M.; Jalavand, M., Solution of Troesch’s problem through double exponential Sinc-Galerkin method, Comput. Methods Differ. Equ., 5, 2, 141-157 (2017) · Zbl 1424.65109
[14] Amin, R.; Shah, K.; Asif, M.; Imran, K.; Ullah, F., An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet, J. Comput. Appl. Math., 381 (2021) · Zbl 1451.65230 · doi:10.1016/j.cam.2020.113028
[15] Amin, R.; Shah, K.; Asif, M.; Imran, K., A computational algorithm for the numerical solution of fractional order delay differential equations, Appl. Math. Comput., 402 (2021) · Zbl 1510.65126
[16] Nosrati Sahlan, M., Four computational approaches for solving a class of boundary value problems arising in chemical reactor industry, Appl. Math. Comput., 355, 253-268 (2019) · Zbl 1429.65173
[17] Shah, K., Using a numerical method by omitting discretization of data to study numerical solutions for boundary value problems of fractional order differential equations, Math. Methods Appl. Sci., 42, 6944-6959 (2019) · Zbl 1440.65076 · doi:10.1002/mma.5800
[18] Chui, C., An Introduction to Wavelets (1992), New York: Academic Press, New York · Zbl 0925.42016
[19] Chui, C., Wavelets: A Mathematical Tool for Signal Analysis (1997), Philadelpia: SIAM, Philadelpia · Zbl 0903.94007 · doi:10.1137/1.9780898719727
[20] Liu, X. J.; Zhou, Y. H.; Zhang, L.; Wang, J. Z., Wavelet solutions of Burgers equation with high Reynolds numbers, Sci. China, Technol. Sci., 57, 7, 1285-1292 (2014) · doi:10.1007/s11431-014-5588-z
[21] Wang, J. Z.; Zhou, Y. H.; Gao, H. J., Computation of the Laplace inverse transform by application of the wavelet theory, Commun. Numer. Methods Eng., 19, 12, 959-975 (2003) · Zbl 1035.65159 · doi:10.1002/cnm.645
[22] Zhang, L.; Liu, X. J.; Zhou, Y. H.; Wang, J. Z., Influence of vanishing moments on the accuracy of a modified wavelet Galerkin method for nonlinear boundary value problems, 11th International Conference of Numerical Analysis and Applied Mathematics 2013, 942-945 (2013), New York: AIP, New York
[23] Wang, J.Z.: Generalized theory and arithmetic of orthogonal wavelets and applications to researches of mechanics including piezoelectric smart structures. PhD thesis, Lanzhou University (2001)
[24] Zhou, Y. H.; Wang, J. Z., Generalized Gaussian integral method for the calculation of scaling function transforms of wavelets and its applications, Acta Math. Sci. Ser. A Chin. Ed., 19, 3, 293-300 (1999) · Zbl 0941.65015
[25] Khuri, S. A.; Sayfy, A., Troesch’s problem: a B-spline collocation approach, Math. Comput. Model., 54, 1907-1918 (2011) · Zbl 1235.65086 · doi:10.1016/j.mcm.2011.04.030
[26] Haq, F.; Shah, K.; Al-Mdallal, Q.; Jarad, F., Application of a hybrid method for systems of fractional order partial differential equations arising in the model of the one-dimensional Keller-Segel equation, Eur. Phys. J. Plus, 134 (2019) · doi:10.1140/epjp/i2019-12815-7
[27] Gul, H.; Alrabaiah, H.; Ali, S.; Shah, K.; Muhammad, S., Computation of solution to fractional order partial reaction diffusion equations, J. Adv. Res., 25, 31-38 (2020) · doi:10.1016/j.jare.2020.04.021
[28] Daubechies, I., Ten Lectures on Wavelets (1992), Philadelpia: SIAM, Philadelpia · Zbl 0776.42018 · doi:10.1137/1.9781611970104
[29] Strang, G.; Nguyen, T., Wavelets and Filter Banks (1997), Cambridge: Wellesley-Cambridge, Cambridge · Zbl 1254.94002
[30] Telesca, L.; Hloupis, G.; Nikolintaga, I.; Vallianatos, F., Temporal patterns in southern Aegean seismicity revealed by the multiresolution wavelet analysis, Commun. Nonlinear Sci. Numer. Simul., 12, 1418-1426 (2007) · Zbl 1127.86304 · doi:10.1016/j.cnsns.2005.12.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.