×

Imaging anisotropic conductivities from current densities. (English) Zbl 1495.35214

Summary: In this paper, we propose and analyze a reconstruction algorithm for imaging an anisotropic conductivity tensor in a second-order elliptic PDE with a nonzero Dirichlet boundary condition from internal current densities. It is based on a regularized output least-squares formulation with the standard \(L^2 (\Omega)^{d,d}\) penalty, which is then discretized by the standard Galerkin finite element method. We establish the continuity and differentiability of the forward map with respect to the conductivity tensor in the \(L^p (\Omega)^{d,d}\)-norms, the existence of minimizers and optimality systems of the regularized formulation using the concept of H-convergence. Further, we provide a detailed analysis of the discretized problem, especially the convergence of the discrete approximations with respect to the mesh size, using the discrete counterpart of H-convergence. In addition, we develop a projected Newton algorithm for solving the first-order optimality system. We present extensive two-dimensional numerical examples to show the efficiency of the proposed method.

MSC:

35R30 Inverse problems for PDEs
35R25 Ill-posed problems for PDEs
35J25 Boundary value problems for second-order elliptic equations
47J06 Nonlinear ill-posed problems

Software:

FreeFem++

References:

[1] B. J. Adesokan, B. Jensen, B. Jin, and K. Knudsen, Acousto-electric tomography with total variation regularization, Inverse Problems, 35 (2019), 035008, https://doi.org/10.1088/1361-6420/aaece5. · Zbl 1410.65429
[2] G. S. Alberti, H. Ammari, B. Jin, J.-K. Seo, and W. Zhang, The linearized inverse problem in multifrequency electrical impedance tomography, SIAM J. Imaging Sci., 9 (2016), pp. 1525-1551, https://doi.org/10.1137/16M1061564. · Zbl 1381.94006
[3] H. Ammari, An Introduction to Mathematics of Emerging Biomedical Imaging, Springer, Berlin, 2008. · Zbl 1181.92052
[4] H. Ammari, S. Boulmier, and P. Millien, A mathematical and numerical framework for magnetoacoustic tomography with magnetic induction, J. Differential Equations, 259 (2015), pp. 5379-5405, https://doi.org/10.1016/j.jde.2015.06.040. · Zbl 1325.35271
[5] H. Ammari, J. Garnier, L. Giovangigli, W. Jing, and J.-K. Seo, Spectroscopic imaging of a dilute cell suspension, J. Math. Pures Appl. (9), 105 (2016), pp. 603-661, https://doi.org/10.1016/j.matpur.2015.11.009. · Zbl 1401.35332
[6] H. Ammari, L. Qiu, F. Santosa, and W. Zhang, Determining anisotropic conductivity using diffusion tensor imaging data in magneto-acoustic tomography with magnetic induction, Inverse Problems, 33 (2017), 125006, https://doi.org/10.1088/1361-6420/aa907e. · Zbl 1382.78016
[7] G. Bal, C. Guo, and F. Monard, Imaging of anisotropic conductivities from current densities in two dimensions, SIAM J. Imaging Sci., 7 (2014), pp. 2538-2557, https://doi.org/10.1137/140961754. · Zbl 1361.94005
[8] G. Bal, C. Guo, and F. Monard, Inverse anisotropic conductivity from internal current densities, Inverse Problems, 30 (2014), 025001, https://doi.org/10.1088/0266-5611/30/2/025001. · Zbl 1285.35130
[9] S. Bartels, C. Carstensen, and G. Dolzmann, Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis, Numer. Math., 99 (2004), pp. 1-24, https://doi.org/10.1007/s00211-004-0548-3. · Zbl 1062.65113
[10] L. Borcea, Electrical impedance tomography, Inverse Problems, 18 (2002), pp. R99-R136, https://doi.org/10.1088/0266-5611/18/6/201. · Zbl 1031.35147
[11] J. H. Bramble and J. Xu, Some estimates for a weighted \(L^2\) projection, Math. Comp., 56 (1991), pp. 463-476, https://doi.org/10.2307/2008391. · Zbl 0722.65057
[12] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Springer, New York, 2008, https://doi.org/10.1007/978-0-387-75934-0. · Zbl 1135.65042
[13] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. · Zbl 0383.65058
[14] K. Deckelnick and M. Hinze, Identification of matrix parameters in elliptic PDEs, Control Cybernet., 40 (2011), pp. 957-969. · Zbl 1318.49070
[15] K. Deckelnick and M. Hinze, Convergence and error analysis of a numerical method for the identification of matrix parameters in elliptic PDEs, Inverse Problems, 28 (2012), 115015, https://doi.org/10.1088/0266-5611/28/11/115015. · Zbl 1269.65114
[16] D. Dos Santos Ferreira, C. E. Kenig, M. Salo, and G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems, Invent. Math., 178 (2009), pp. 119-171, https://doi.org/10.1007/s00222-009-0196-4. · Zbl 1181.35327
[17] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic, Dordrecht, 1996. · Zbl 0859.65054
[18] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992. · Zbl 0804.28001
[19] R. Eymard and T. Gallouët, \(H\)-convergence and numerical schemes for elliptic problems, SIAM J. Numer. Anal., 41 (2003), pp. 539-562, https://doi.org/10.1137/S0036142901397083. · Zbl 1049.35015
[20] G. J. Fix, M. D. Gunzburger, and J. S. Peterson, On finite element approximations of problems having inhomogeneous essential boundary conditions, Comput. Math. Appl., 9 (1983), pp. 687-700, https://doi.org/10.1016/0898-1221(83)90126-8. · Zbl 0531.65056
[21] K. R. Foster and H. P. Schwan, Dielectric properties of tissues and biological materials: A critical review, Crit. Rev. Biomed. Eng., 17 (1989), pp. 25-104.
[22] H. R. Gamba, R. Bayford, and D. Holder, Measurement of electrical current density distribution in a simple head phantom with magnetic resonance imaging, Phys. Med. Biol., 44 (1999), pp. 281-91.
[23] S. J. Hamilton, M. Lassas, and S. Siltanen, A direct reconstruction method for anisotropic electrical impedance tomography, Inverse Problems, 30 (2014), 075007, https://doi.org/10.1088/0266-5611/30/7/075007. · Zbl 1298.65175
[24] F. Hecht, New development in FreeFEM++, J. Numer. Math., 20 (2012), pp. 251-265, https://doi.org/10.1515/jnum-2012-0013. · Zbl 1266.68090
[25] N. Hoell, A. Moradifam, and A. Nachman, Current density impedance imaging of an anisotropic conductivity in a known conformal class, SIAM J. Math. Anal., 46 (2014), pp. 1820-1842, https://doi.org/10.1137/130911524. · Zbl 1296.35212
[26] G. C. Hsiao and J. Sprekels, A stability result for distributed parameter identification in bilinear systems, Math. Methods Appl. Sci., 10 (1988), pp. 447-456, https://doi.org/10.1002/mma.1670100409. · Zbl 0656.93023
[27] Y. Ider and L. Muftuler, Measurement of AC magnetic field distribution using magnetic resonance imaging., IEEE Trans. Med. Imaging, 16 (1997), pp. 617-622.
[28] K. Ito and B. Jin, Inverse Problems: Tikhonov Theory and Algorithms, World Scientific, Hackensack, NJ, 2015. · Zbl 1306.65210
[29] Y. Jiao, B. Jin, and X. Lu, A primal dual active set with continuation algorithm for the \(\ell^0\)-regularized optimization problem, Appl. Comput. Harmon. Anal., 39 (2015), pp. 400-426, https://doi.org/10.1016/j.acha.2014.10.001. · Zbl 1329.49042
[30] M. Joy, G. Scott, and M. Henkelman, In vivo detection of applied electric currents by magnetic resonance imaging, Magn. Reson. Imaging, 7 (1989), pp. 89-94, https://doi.org/10.1016/0730-725X(89)90328-7.
[31] C. E. Kenig, M. Salo, and G. Uhlmann, Reconstructions from boundary measurements on admissible manifolds, Inverse Probl. Imaging, 5 (2011), pp. 859-877, https://doi.org/10.3934/ipi.2011.5.859. · Zbl 1237.35160
[32] M.-S. Ko and Y.-J. Kim, Resistivity tensor imaging via network discretization of Faraday’s law, SIAM J. Imaging Sci., 10 (2017), pp. 1-25, https://doi.org/10.1137/16M1074643. · Zbl 1371.35351
[33] R. V. Kohn and B. D. Lowe, A variational method for parameter identification, RAIRO Modél. Math. Anal. Numér., 22 (1988), pp. 119-158, https://doi.org/10.1051/m2an/1988220101191. · Zbl 0636.65127
[34] O. Kwon, J.-Y. Lee, and J.-R. Yoon, Equipotential line method for magnetic resonance electrical impedance tomography, Inverse Problems, 18 (2002), pp. 1089-1100, https://doi.org/10.1088/0266-5611/18/4/310. · Zbl 1038.78015
[35] O. Kwon, E. Woo, J. Yoon, and J. Seo, Magnetic resonance electrical impedance tomography (MREIT): Simulation study of J-substitution algorithm, IEEE Trans. Biomed. Eng., 49 (2002), pp. 160-167.
[36] N. G. Meyers, An \(L^p\)-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3), 17 (1963), pp. 189-206. · Zbl 0127.31904
[37] F. Monard and G. Bal, Inverse anisotropic diffusion from power density measurements in two dimensions, Inverse Problems, 28 (2012), 084001, https://doi.org/10.1088/0266-5611/28/8/084001. · Zbl 1250.35187
[38] F. Monard and G. Bal, Inverse anisotropic conductivity from power densities in dimension \(n\geq3\), Comm. Partial Differential Equations, 38 (2013), pp. 1183-1207, https://doi.org/10.1080/03605302.2013.787089. · Zbl 1314.35210
[39] F. Monard and D. Rim, Imaging of isotropic and anisotropic conductivites from power densities in three dimensions, Inverse Problems, 34 (2018), pp. 075005, https://doi.org/10.1088/1361-6420/aabe5a.
[40] T. Morimoto, S. Kimura, Y. Konishi, K. Komaki, T. Uyama, Y. Monden, D. Y. Kinouchi, and D. T. Iritani, A study of the electrical bio-impedance of tumors, Invest. Surg., 6 (1993), pp. 25-32.
[41] F. Murat and L. Tartar, \(H\)-Convergence, Progr. Nonlinear Differential Equations Appl. 31, Birkhäuser Boston, Boston, MA, 1997. · Zbl 0913.35020
[42] A. Nachman, A. Tamasan, and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data, Inverse Problems, 23 (2007), pp. 2551-2563, https://doi.org/10.1088/0266-5611/23/6/017. · Zbl 1126.35102
[43] A. Nachman, A. Tamasan, and A. Timonov, Recovering the conductivity from a single measurement of interior data, Inverse Problems, 25 (2009), 035014, https://doi.org/10.1088/0266-5611/25/3/035014. · Zbl 1173.35736
[44] P. W. Nicholson, Specific impedance of cerebral white matter, Exp. Neurol., 13 (1965), pp. 386-401, https://doi.org/10.1016/0014-4886(65)90126-3.
[45] B. J. Roth, The Electrical Conductivity of Tissues, in The Biomedical Engineering Handbook, CRC Press, Boca Raton, FL, 2000, pp. 10.1-10.12.
[46] S. Rush and D. Driscoll, Current distribution in the brain from surface electrodes, Anesth. Analg., 47 (1968), pp. 717-723.
[47] G. Scott, M. Joy, R. Armstrong, and R. Henkelman, Measurement of nonuniform current density by magnetic resonance, IEEE Trans. Med. Imag., 10 (1991), pp. 362-374, https://doi.org/10.1109/42.97586.
[48] J. K. Seo, H. C. Pyo, C. Park, O. Kwon, and E. J. Woo, Image reconstruction of anisotropic conductivity tensor distribution in MREIT: Computer simulation study, Phys. Med. Biol., 49 (2004), pp. 4371-4382, https://doi.org/10.1088/0031-9155/49/18/012.
[49] J. K. Seo and E. J. Woo, Magnetic resonance electrical impedance tomography (MREIT), SIAM Rev., 53 (2011), pp. 40-68, https://doi.org/10.1137/080742932. · Zbl 1210.35293
[50] G. Strang and G. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1973. · Zbl 0356.65096
[51] L. Tartar, The General Theory of Homogenization, A Personalized Introduction, Springer-Verlag, Berlin, 2009, https://doi.org/10.1007/978-3-642-05195-1. · Zbl 1188.35004
[52] G. Uhlmann, Electrical impedance tomography and Calderón’s problem, Inverse Problems, 25 (2009), 123011, https://doi.org/10.1088/0266-5611/25/12/123011. · Zbl 1181.35339
[53] T. Widlak and O. Scherzer, Hybrid tomography for conductivity imaging, Inverse Problems, 28 (2012), 084008, https://doi.org/10.1088/0266-5611/28/8/084008. · Zbl 1252.92043
[54] H. Yazdanian and K. Knudsen, Numerical conductivity reconstruction from partial interior current density information in three dimensions, Inverse Problems, 37 (2021), 105010, https://doi.org/10.1088/1361-6420/ac1e81. · Zbl 1472.35461
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.