×

Blow-up and lifespan estimate for generalized Tricomi equations related to Glassey conjecture. (English) Zbl 1495.35127

In the present paper, the authors study the following semilinear Cauchy problem for generalized Tricomi equations: \begin{align*} & u_{tt}- t^{2m}\Delta u=|u_t|^p,\quad (t,x)\in (0,\infty)\times \mathbb{R}^n,\\ & u(0,x)=\varepsilon f(x), \quad u_t(0,x)=\varepsilon g(x),\quad x \in \mathbb{R}^n, \end{align*} where \(n \geq 1\), \(m \geq 0\), \(p>1\) and \(\varepsilon >0\) is sufficiently small. The nonlinearity is of derivative type. This model is for \(m>0\) weakly hyperbolic at \(t=0\) and has for \(t \to \infty\) an increasing time-dependent coefficient. The authors are interested in blow-up results and estimates of the lifespan. It is clear that such results are only of interest if they provide a local (in time) existence result, too.
The authors prove for \(m \in [0,2)\) and a suitable range of exponents \(p\) such a local (in time) existence result. Here they use the scale-invariance structure of the linear part of the generalized Tricomi equation, which allows to apply special function theory. In particular, the weakly hyperbolic theory gives the correct Sobolev regularity for the data. Then a contraction property can be proved for operators appearing in the definition of weak solutions. This procedure leads to lifespan estimates to below. Maybe in the future the authors use decay properties of Sobolev solutions to Cauchy problems for linear generalized Tricomi equations to get on the one hand global (in time) small data existence results and on the other hand better estimates of the life-span to below.
To verify blow-up phenomena and derive lifespan estimates to above the authors use the test function method. Here they use an interesting family of test functions. All the obtained results lead to a conjecture for the critical exponent and optimal lifespan estimates.
It would be nice to have local (in time) existence results for \(m \geq 2\) and \(p>1\), too. Moreover, global (in time) small data existence results and better estimates of the lifespan to below should be established to verify these conjectures.

MSC:

35L71 Second-order semilinear hyperbolic equations
35L80 Degenerate hyperbolic equations
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35B44 Blow-up in context of PDEs
35L15 Initial value problems for second-order hyperbolic equations

References:

[1] Abramovitz, M., Stegun, I.A.: Handbook of Mathematical Functions, 10th printing. National Bureau of Standards (1972) · Zbl 0543.33001
[2] Agemi, R., Blow-up of solutions to nonlinear wave equations in two space dimensions, Manuscr. Math., 73, 153-162 (1991) · Zbl 0763.35060 · doi:10.1007/BF02567635
[3] Barros-Neto, J.; Gelfand, IM, Fundamental solutions for the Tricomi operator, Duke Math. J., 98, 3, 465-483 (1999) · Zbl 0945.35063 · doi:10.1215/S0012-7094-99-09814-9
[4] Barros-Neto, J., Gelfand, I.M.: Fundamental solutions for the Tricomi operator. II. Duke Math. J. 111(3), 561-584 (2002) · Zbl 1017.35081
[5] Barros-Neto, J.; Gelfand, IM, Fundamental solutions of the Tricomi operator III, Duke Math. J., 128, 1, 119-140 (2005) · Zbl 1083.35068 · doi:10.1215/S0012-7094-04-12815-5
[6] Brenner, P., On \(L^p-L^{p^{\prime }}\) estimates for the wave-equation, Math. Z., 145, 3, 251-254 (1975) · Zbl 0321.35052 · doi:10.1007/BF01215290
[7] Chen, W.; Lucente, S.; Palmieri, A., Nonexistence of global solutions for generalized Tricomi equations with combined nonlinearity, Nonlinear Anal. Real World Appl., 61, 103354 (2021) · Zbl 1481.35286 · doi:10.1016/j.nonrwa.2021.103354
[8] Ebert, M.R., Reissig, M.: Methods for partial differential equations. Qualitative Properties of Solutions, Phase Space Analysis, Semilinear Models (2018) · Zbl 1503.35003
[9] Frankl, F., On the problems of Chaplygin for mixed sub- and supersonic flows, Bull. Acad. Sci. URSS. Ser. Math., 9, 121-143 (1945) · Zbl 0063.01435
[10] Glassey, R.T.: MathReview to “Global behavior of solutions to nonlinear wave equations in three space dimensions” of Sideris. Commun. Partial Differ. Equ. (1983) · Zbl 0534.35069
[11] Hamouda, M., Hamza, M.A.: Blow-up and lifespan estimate for the generalized Tricomi equation with mixed nonlinearities (2020). arXiv:2011.04895
[12] He, D.Y.: Critical Exponents for Semilinear Tricomi-type Equations, Doctoral dissertation. Georg-August-Universität Göttingen (2016) · Zbl 1409.35004
[13] He, DY; Witt, I.; Yin, HC, On semilinear Tricomi equations with critical exponents or in two space dimensions, J. Differ. Equ., 263, 12, 8102-8137 (2017) · Zbl 1379.35199 · doi:10.1016/j.jde.2017.08.033
[14] He, D.Y., Witt, I., Yin, H.C.: On the global solution problem for semilinear generalized Tricomi equations, I. Calc. Var. Partial Differ. Equ. 56(2), Art. 21 (2017) · Zbl 1368.35192
[15] He, DY; Witt, I.; Yin, HC, On the global weak solution problem of semilinear generalized Tricomi equations. II, Pac. J. Math., 314, 1, 29-80 (2021) · Zbl 1476.35147 · doi:10.2140/pjm.2021.314.29
[16] He, D.Y., Witt, I., Yin, H.C.: On semilinear Tricomi equations in one space dimension. arXiv:1810.12748 · Zbl 1379.35199
[17] Hidano, K.; Tsutaya, K., Global existence and asymptotic behavior of solutions for nonlinear wave equations, Indiana Univ. Math. J., 44, 1273-1305 (1995) · Zbl 0858.35085 · doi:10.1512/iumj.1995.44.2028
[18] Hidano, K.; Wang, C.; Yokoyama, K., The Glassey conjecture with radially symmetric data, J. Math. Pures Appl., 98, 9, 518-541 (2012) · Zbl 1262.35033 · doi:10.1016/j.matpur.2012.01.007
[19] Hörmander, L., Estimates for translation invariant operators in \(L^p\) spaces, Acta Math., 104, 1-2, 93-140 (1960) · Zbl 0093.11402 · doi:10.1007/BF02547187
[20] Ikeda, M.; Lin, JY; Tu, ZH, Small data blow-up for the weakly coupled system of the generalized Tricomi equations with multiple propagation speed, J. Evol. Equ., 21, 4, 3765-3796 (2021) · Zbl 1481.35086 · doi:10.1007/s00028-021-00703-4
[21] Ikeda, M.; Sobajima, M.; Wakasa, K., Blow-up phenomena of semilinear wave equations and their weakly coupled systems, J. Differ. Equ., 267, 5165-5201 (2019) · Zbl 1455.35028 · doi:10.1016/j.jde.2019.05.029
[22] Inui, T., Special Function (1962), Tokyo: Iwanami Shoten, Tokyo
[23] John, F., Blow-up for quasilinear wave equations in three space dimensions, Commun. Pure Appl. Math., 34, 29-51 (1981) · Zbl 0453.35060 · doi:10.1002/cpa.3160340103
[24] John, F.: Non-existence of global solutions of \(\square u = \frac{\partial }{\partial t} F(u_t)\) in two and three space dimensions. Rend. Circ. Mat. Palermo (2) Suppl. 8, 229-249 (1985) · Zbl 0649.35060
[25] Lai, NA; Schiavone, NM; Takamura, H., Heat-like and wave-like lifespan estimates for solutions of semilinear damped wave equations via a Kato’s type lemma, J. Differ. Equ., 269, 11575-11620 (2020) · Zbl 1450.35080 · doi:10.1016/j.jde.2020.08.020
[26] Lai, NA; Takamura, H., Blow-up for semilinear damped wave equations with sub-Strauss exponent in the scattering case, Nonlinear Anal., 168, 222-237 (2018) · Zbl 1395.35045 · doi:10.1016/j.na.2017.12.008
[27] Lai, NA; Takamura, H., Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glassey’s conjecture, Differ. Integr. Equ., 32, 37-48 (2019) · Zbl 1424.35254
[28] Lai, NA; Tu, ZH, Strauss exponent for semilinear wave equations with scattering space dependent damping, J. Math. Anal. Appl., 489 (2020) · Zbl 1445.35251 · doi:10.1016/j.jmaa.2020.124189
[29] Lin, J.Y., Tu, Z.H.: Lifespan of semilinear generalized Tricomi equation with Strauss type exponent. arXiv:1903.11351
[30] Lucente, S.; Palmieri, A., A blow-up result for a generalized Tricomi equation with nonlinearity of derivative type, Milan J. Math., 89, 1, 45-57 (2021) · Zbl 1470.35079 · doi:10.1007/s00032-021-00326-x
[31] Masuda, K., Blow-up solutions for quasi-linear wave equations in two space dimensions, Lect. Notes Numer. Appl. Anal., 6, 87-91 (1983)
[32] Rammaha, MA, Finite-time blow-up for nonlinear wave equations in high dimensions, Commun. Partial Differ. Equ., 12, 6, 677-700 (1987) · Zbl 0631.35060 · doi:10.1080/03605308708820506
[33] Reissig, M.: On \(L_p - L_q\) estimates for solutions of a special weakly hyperbolic equation. Nonlinear Evolution Equations and Infinite-Dimensional Dynamical Systems, pp. 153-164 (1997) · Zbl 0990.35087
[34] Reissig, M.: Weakly hyperbolic equations with time degeneracy in Sobolev spaces. Abstr. Appl. Anal. 2(3-4), 239-256 (1997) · Zbl 0938.35109
[35] Ruan, Z-P; Witt, I.; Yin, H-C, The existence and singularity structures of low regularity solutions to higher order degenerate hyperbolic equations, J. Differ. Equ., 256, 407-460 (2014) · Zbl 1320.35235 · doi:10.1016/j.jde.2013.09.007
[36] Ruan, Z-P; Witt, I.; Yin, H-C, On the existence and cusp singularity of solutions to semilinear generalized Tricomi equations with discontinuous initial data, Commun. Contemp. Math., 17, 3, 1450028 (2015) · Zbl 1329.35215 · doi:10.1142/S021919971450028X
[37] Ruan, Z-P; Witt, I.; Yin, H-C, On the existence of low regularity solutions to semilinear generalized Tricomi equations in mixed type domains, J. Differ. Equ., 259, 7406-7462 (2015) · Zbl 1329.35218 · doi:10.1016/j.jde.2015.08.025
[38] Ruan, Z-P; Witt, I.; Yin, H-C, Minimal regularity solutions of semilinear generalized Tricomi equations, Pac. J. Math., 296, 1, 181-226 (2018) · Zbl 1394.35067 · doi:10.2140/pjm.2018.296.181
[39] Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, vol. 3. Walter de Gruyter (2011) · Zbl 0873.35001
[40] Schaeffer, J., Finite-time blow up for \(u_{tt}-\Delta u = H(u_r, u_t)\) in two space dimensions, Commun. Partial Differ. Equ., 11, 5, 513-543 (1986) · Zbl 0592.35088 · doi:10.1080/03605308608820434
[41] Sideris, TC, Global behavior of solutions to nonlinear wave equations in three space dimensions, Commun. Partial Differ. Equ., 8, 12, 1291-1323 (1983) · Zbl 0534.35069 · doi:10.1080/03605308308820304
[42] Taniguchi, K.; Tozaki, Y., A hyperbolic equation with double characteristics which has a solution with branching singularities, Math. Jpn., 25, 279-300 (1980) · Zbl 0441.35040
[43] Tricomi, F.: Sulle equazioni lineari alle derivate parziali di secondo ordine, di tipo misto. Atti Accad. Naz. Lincei Mem. Cl. Fis. Mat. Nat. 5, 134-247 (1923) · JFM 49.0346.01
[44] Tzvetkov, N., Existence of global solutions to nonlinear massless Dirac system and wave equation with small data, Tsukuba J. Math., 22, 193-211 (1998) · Zbl 0945.35075 · doi:10.21099/tkbjm/1496163480
[45] Wang, CB, The Glassey conjecture on asymptotically flat manifolds, Trans. Am. Math. Soc., 367, 7429-7451 (2015) · Zbl 1330.35259 · doi:10.1090/S0002-9947-2014-06423-4
[46] Yagdjian, K., A note on the fundamental solution for the Tricomi-type equation in the hyperbolic domain, J. Differ. Equ., 206, 227-252 (2004) · Zbl 1065.35006 · doi:10.1016/j.jde.2004.07.028
[47] Yagdjian, K.: Global existence for the \(n\)-dimensional semilinear Tricomi-type equations. Commun. Partial Differ. Equ. 31(4-6), 907-944 (2006) · Zbl 1097.35106
[48] Yagdjian, K., The self-similar solutions of the one-dimensional semilinear Tricomi-type equations, J. Differ. Equ., 236, 1, 82-115 (2007) · Zbl 1120.35073 · doi:10.1016/j.jde.2007.01.005
[49] Yagdjian, K., The self-similar solutions of the Tricomi-type equations, Z. Angew. Math. Phys., 58, 4, 612-645 (2007) · Zbl 1190.35165 · doi:10.1007/s00033-006-5099-2
[50] Yagdjian, K., Self-similar solutions of semilinear wave equation with variable speed of propagation, J. Math. Anal. Appl., 336, 2, 1259-1286 (2007) · Zbl 1129.35050 · doi:10.1016/j.jmaa.2007.03.061
[51] Zhou, Y., Blow-up of solutions to the Cauchy problem for nonlinear wave equations, Chin. Ann. Math., 22B, 3, 275-280 (2001) · Zbl 0985.35046 · doi:10.1142/S0252959901000280
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.