×

Propagation phenomena for man-environment epidemic model with nonlocal dispersals. (English) Zbl 1495.35069

Summary: In this paper, we focus on the propagation phenomena of a bistable man-environment epidemic model with nonlocal dispersals, where there exists a positive feedback interaction between the concentration of infectious agent and infectious human population. The monostable and bistable traveling wave solutions and three-wave entire solutions are studied. First, by applying and developing the known results for monostable case, we give a summary of the existence and asymptotic behavior of all monostable traveling wave solutions in two different monostable intervals and further find some relationship between them. The existence of bistable traveling wave solutions is obtained by introducing the results about monotone semiflows with weak compactness. Second, we give twelve types of three-wave entire solutions, which contain all possibilities of three-wave entire solutions originating from three traveling wave solutions with different nonzero wave speeds, by constructing new auxiliary functions and super- and sub-solutions for every type. We also show that these entire solutions are globally Lipschitz continuous with respect to spatial variable. In addition, the nonexistence result of entire solutions originating from more than four traveling wave solutions is obtained.

MSC:

35C07 Traveling wave solutions
35K57 Reaction-diffusion equations
35R09 Integro-partial differential equations
92D30 Epidemiology
Full Text: DOI

References:

[1] Andreu-Vaillo, F.; Mazón, JM; Rossi, JD; Toledo-Melero, J., Nonlocal Diffusion Problems, Mathematical Surveys and Monographs (2010), Providence: American Mathematical Society, Providence · Zbl 1214.45002 · doi:10.1090/surv/165
[2] Bates, PW; Fife, PC; Ren, X.; Wang, X., Traveling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., 138, 105-136 (1997) · Zbl 0889.45012 · doi:10.1007/s002050050037
[3] Bates, PW, On some nonlocal evolution equations arising in materials science, Nonlinear Dyn. Evol. Equ., 48, 13-52 (2006) · Zbl 1101.35073
[4] Cannas, SA; Marco, DE; Montemurro, MA, Long range dispersal and spatial pattern formation in biological invasions, Math. Biosci., 203, 155-170 (2006) · Zbl 1101.92047 · doi:10.1016/j.mbs.2006.06.005
[5] Capasso, V., Maddalena, L.: Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases. J. Math. Biol. 13, 173-184 (1981/82) · Zbl 0468.92016
[6] Capasso, V.; Maddalena, L., Saddle point behavior for a reaction-diffusion system: application to a class of epidemic models, Math. Comput. Simul., 24, 540-547 (1982) · Zbl 0502.92018 · doi:10.1016/0378-4754(82)90656-5
[7] Capasso, V.; Wilson, RE, Analysis of a reaction-diffusion system modeling man-environment-man epidemics, SIAM J. Appl. Math., 57, 327-346 (1997) · Zbl 0872.35053 · doi:10.1137/S0036139995284681
[8] Carr, J.; Chmaj, A., Uniqueness of travelling waves for nonlocal monostable equations, Proc. Am. Math. Soc., 132, 2433-2439 (2004) · Zbl 1061.45003 · doi:10.1090/S0002-9939-04-07432-5
[9] Chen, X.; Guo, JS, Existence and uniqueness of entire solutions for a reaction-diffusion equation, J. Differ. Equ., 212, 62-84 (2005) · Zbl 1079.35046 · doi:10.1016/j.jde.2004.10.028
[10] Chen, X.; Guo, JS; Ninomiya, H., Entire solutions of reaction-diffusion equations with balanced bistable nonlinearities, Proc. Roy. Soc. Edinb. Sect. A, 136, 1207-1237 (2006) · Zbl 1123.35024 · doi:10.1017/S0308210500004959
[11] Chen, YY; Guo, JS; Ninomiya, H.; Yao, CH, Entire solutions originating from monotone fronts to the Allen-Cahn equation, Phys. D, 378, 379, 1-19 (2018) · Zbl 1404.35251 · doi:10.1016/j.physd.2018.04.003
[12] Coville, J.; Dávila, J.; Martínez, S., Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differ. Equ., 244, 3080-3118 (2008) · Zbl 1148.45011 · doi:10.1016/j.jde.2007.11.002
[13] Dong, FD; Li, WT; Wu, SL; Zhang, L., Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity, Discrete Contin. Dyn. Syst. Ser. B, 26, 1031-1060 (2021) · Zbl 1465.35021
[14] Fang, J.; Zhao, XQ, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46, 3678-3704 (2014) · Zbl 1315.35051 · doi:10.1137/140953939
[15] Fang, J.; Zhao, XQ, Bistable traveling waves for monotone semiflows with applications, J. Eur. Math. Soc., 17, 2243-2288 (2015) · Zbl 1352.37072 · doi:10.4171/JEMS/556
[16] Fife, P., Some Nonclassical Trends in Parabolic and Parabolic-like Evolutions, Trends in Nonlinear Analysis, 153-191 (2003), Berlin: Springer, Berlin · Zbl 1072.35005
[17] Fukao, Y.; Morita, Y.; Ninomiya, H., Some entire solutions of the Allen-Cahn equation, Proc. Third East Asia Partial Differ. Equ. Conf., 8, 15-32 (2004) · Zbl 1052.35095
[18] Guo, JS; Wu, CH, Entire solutions originating from traveling fronts for a two-species competition-diffusion system, Nonlinearity, 32, 3234-3268 (2019) · Zbl 1418.35218 · doi:10.1088/1361-6544/ab1b83
[19] Hallatschek, O.; Fisher, DS, Acceleration of evolutionary spread by long-range dispersal, Proc. Natl. Acad. Sci. USA, 111, E4911-E4919 (2014) · doi:10.1073/pnas.1404663111
[20] Hamel, F.; Nadirashvili, N., Entire solutions of the KPP equation, Commun. Pure Appl. Math., 52, 1255-1276 (1999) · Zbl 0932.35113 · doi:10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W
[21] Hamel, F.; Nadirashvili, N., Travelling fronts and entire solutions of the Fisher-KPP equation in \({\mathbb{R}}^N\), Arch. Ration. Mech. Anal., 157, 91-163 (2001) · Zbl 0987.35072 · doi:10.1007/PL00004238
[22] Hsu, CH; Yang, TS, Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models, Nonlinearity, 26, 121-139 (2013) · Zbl 1264.35255 · doi:10.1088/0951-7715/26/1/121
[23] Hu, C.; Kuang, Y.; Li, B.; Liu, H., Spreading speeds and traveling wave solutions in cooperative integral-differential systems, Discrete Contin. Dyn. Syst. Ser. B, 20, 1663-1684 (2015) · Zbl 1334.45016
[24] Kao, CY; Lou, Y.; Shen, W., Random dispersal versus non-local dispersal, Discrete Contin. Dyn. Syst., 26, 551-596 (2010) · Zbl 1187.35127 · doi:10.3934/dcds.2010.26.551
[25] Li, WT; Wang, ZC; Wu, J., Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity, J. Differ. Equ., 245, 102-129 (2008) · Zbl 1185.35314 · doi:10.1016/j.jde.2008.03.023
[26] Li, WT; Sun, YJ; Wang, ZC, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11, 2302-2313 (2010) · Zbl 1196.35015 · doi:10.1016/j.nonrwa.2009.07.005
[27] Li, WT; Xu, WB; Zhang, L., Traveling waves and entire solutions for an epidemic model with asymmetric dispersal, Discrete Contin. Dyn. Syst., 37, 2483-2512 (2017) · Zbl 1357.35266 · doi:10.3934/dcds.2017107
[28] Martin, RH; Smith, HL, Abstract functional-differential equations and reaction-diffusion systems, Trans. Am. Math. Soc., 321, 1-44 (1990) · Zbl 0722.35046
[29] Meng, Y.; Yu, Z.; Hsu, CH, Entire solutions for a delayed nonlocal dispersal system with monostable nonlinearities, Nonlinearity, 32, 1206-1236 (2019) · Zbl 1409.35022 · doi:10.1088/1361-6544/aaf2e7
[30] Morita, Y.; Ninomiya, H., Entire solutions with merging fronts to reaction-diffusion equations, J. Dyn. Differ. Equ., 18, 841-861 (2006) · Zbl 1125.35050 · doi:10.1007/s10884-006-9046-x
[31] Murray, J.D.: Mathematical biology. II, Spatial models and biomedical applications, 3rd edition, Interdisciplinary Applied Mathematics, vol. 18. Springer, New York (2003) · Zbl 1006.92002
[32] Schumacher, K., Travelling-front solutions for integro-differential equations. I, J. Reine Angew. Math., 316, 54-70 (1980) · Zbl 0419.45004
[33] Sun, YJ; Li, WT; Wang, ZC, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differ. Equ., 251, 551-581 (2011) · Zbl 1228.35017 · doi:10.1016/j.jde.2011.04.020
[34] Thieme, HR, Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations, J. Reine Angew. Math., 306, 94-121 (1979) · Zbl 0395.45010
[35] Volpert, AI; Volpert, VA; Volpert, VA, Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs (1994), Providence: American Mathematical Society, Providence · Zbl 0805.35143 · doi:10.1090/mmono/140
[36] Weng, P.; Zhao, XQ, Spreading speed and traveling waves for a multi-type SIS epidemic model, J. Differ. Equ., 229, 270-296 (2006) · Zbl 1126.35080 · doi:10.1016/j.jde.2006.01.020
[37] Wu, SL; Hsu, CH, Existence of entire solutions for delayed monostable epidemic models, Trans. Am. Math. Soc., 368, 6033-6062 (2016) · Zbl 1439.35280 · doi:10.1090/tran/6526
[38] Wu, SL; Chen, GS; Hsu, CH, Entire solutions originating from multiple fronts of an epidemic model with nonlocal dispersal and bistable nonlinearity, J. Differ. Equ., 265, 5520-5574 (2018) · Zbl 1412.35355 · doi:10.1016/j.jde.2018.06.012
[39] Xu, D.; Zhao, XQ, Erratum to: Bistable waves in an epidemic model, J. Dyn. Differ. Equ., 17, 219-247 (2005) · Zbl 1089.34026 · doi:10.1007/s10884-005-6294-0
[40] Xu, WB; Li, WT; Ruan, S., Spatial propagation in an epidemic model with nonlocal diffusion: the influences of initial data and dispersals, Sci. China Math., 63, 2177-2206 (2020) · Zbl 1464.35384 · doi:10.1007/s11425-020-1740-1
[41] Yagisita, H., Backward global solutions characterizing annihilation dynamics of travelling fronts, Publ. Res. Inst. Math. Sci., 39, 117-164 (2003) · Zbl 1030.35015 · doi:10.2977/prims/1145476150
[42] Zhang, L.; Li, WT; Wu, SL, Multi-type entire solutions in a nonlocal dispersal epidemic model, J. Dyn. Differ. Equ., 28, 189-224 (2016) · Zbl 1334.35141 · doi:10.1007/s10884-014-9416-8
[43] Zhao, XQ; Wang, W., Fisher waves in an epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 4, 1117-1128 (2004) · Zbl 1097.34022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.