×

Quasiprojective manifolds with negative holomorphic sectional curvature. (English) Zbl 1495.32059

The famous Lang conjecture states that a projective manifold is hyperbolic if and only if it is of general type and each of its subvarieties is of general type. Here, \(Y\) is of general type if the canonical bundle \(K_{\widetilde Y}\) of any smooth birational model \(\widetilde{Y}\) is big.
The first main result in this paper (Theorem A) says that if \((M,\omega)\) is a compact Kähler manifold with negative holomorphic sectional curvature (which is automatically projective and Brody hyperbolic) then any irreducible subvariety \(Y\) of \(M\) is of general type, in agreement with the Lang conjecture. The main new idea in the proof consists in constructing on a desingularization \(\widetilde Y\) of \(Y\) a family of singular Kähler-Einstein metrics \((\omega_b)_{b>0}\) generically with cone singularities along a given ample divisor \(B\) and whose cone angle tends to \(2\pi\) as \(b\to 0\) and then showing that the volume of \(\omega_b\) does not go to 0 when \(b\) tends to \(0\).
The author then generalizes Theorem A in two directions. First of all, he proves (Theorem 3.1) that only assuming that \((M,\omega)\) has quasinegative holomorphic sectional curvature then any irreducible subvariety intersecting the negative curvature locus is of general type.
The second generalization concerns the quasiprojective case. Indeed, the author proves (Theorem B) that if \(X\) is a projective manifold, \(D\) a reduced divisor with simple normal crossings and there exists a Kähler metric \(\omega\) on \(X\setminus D\) with holomorphic sectional curvature bounded above by a negative constant then \((X,D)\) is of log-general type, that is \(K_X+D\) is big. Moreover, if \(\omega\) is bounded near \(D\) then \(K_X\) itself is big.
Reviewer: Marco Abate (Pisa)

MSC:

32Q05 Negative curvature complex manifolds
32Q20 Kähler-Einstein manifolds
32Q45 Hyperbolic and Kobayashi hyperbolic manifolds

References:

[1] T. Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math. (2) 102 (1978), no. 1, 63-95. · Zbl 0374.53022
[2] C. Birkar, P. Cascini, C. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), 405-468. · Zbl 1210.14019 · doi:10.1090/S0894-0347-09-00649-3
[3] S. Boucksom, On the volume of a line bundle, Int. J. Math. 13 (2002), no. 10, 1043-1063. · Zbl 1101.14008 · doi:10.1142/S0129167X02001575
[4] S. Boucksom, A. Broustet, and G. Pacienza, Uniruledness of stable base loci of adjoint linear systems via Mori theory, Math. Z. 275 (2013), no. 1-2, 499-507. · Zbl 1278.14021 · doi:10.1007/s00209-013-1144-y
[5] S. Boucksom, J.-P. Demailly, M. Păun, and T. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2013), no. 2, 201-248. · Zbl 1267.32017 · doi:10.1090/S1056-3911-2012-00574-8
[6] S. Boucksom and S. Diverio, A note on Lang’s conjecture for quotients of bounded domains, Épijournal Géom. Algébrique 5 (2021). · Zbl 1464.32036 · doi:10.46298/epiga.2021.volume5.6050
[7] S. Boucksom, P. Eyssidieux, V. Guedj, and A. Zeriahi, Monge-Ampère equations in big cohomology classes, Acta Math. 205 (2010), no. 2, 199-262. · Zbl 1213.32025 · doi:10.1007/s11511-010-0054-7
[8] D. Brotbek, On the hyperbolicity of general hypersurfaces, Publ. Math. Inst. Hautes Études Sci. 126 (2017), 1-34. · Zbl 1458.32022 · doi:10.1007/s10240-017-0090-3
[9] B. Cadorel, Symmetric differentials on complex hyperbolic manifolds with cusps, J. Differential Geom., 118 (2021), no. 3, 373-398. · Zbl 1477.32042 · doi:10.4310/jdg/1625860621
[10] F. Campana, H. Guenancia, and M. Păun, Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 6, 879-916. · Zbl 1310.32029 · doi:10.24033/asens.2205
[11] F. Campana and M. Păun, Orbifold generic semi-positivity: an application to families of canonically polarized manifolds, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 2, 835-861. · Zbl 1338.14012
[12] H. Clemens, Curves on generic hypersurfaces, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 4, 629-636. · Zbl 0611.14024
[13] J.-P. Demailly, “Recent results on the Kobayashi and Green-Griffiths-Lang conjectures,” to appear in Kobayashi Hyperbolicity and Positivity of the Canonical Bundle, Panor. Synthèses, Soc. Math. France, Paris, preprint, arXiv:1801.04765 [Math.AG].
[14] M. Deschamps, “Courbes de genre géométrique borné sur une surface de type général (d’après F. A. Bogomolov)” in Séminaire Bourbaki 1977/1978, no. 519, Lecture Notes in Math. 710, Springer, Berlin, 1979, 233-247. · Zbl 0412.14013
[15] S. Diverio and S. Trapani, Quasi-negative holomorphic sectional curvature and positivity of the canonical bundle, J. Differential Geom. 111 (2019), no. 2, 303-314. · Zbl 1484.32029 · doi:10.4310/jdg/1549422103
[16] L. Ein, Subvarieties of generic complete intersections, Invent. Math. 94 (1988), no. 1, 163-169. · Zbl 0701.14002 · doi:10.1007/BF01394349
[17] L. Ein Subvarieties of generic complete intersections. II, Math. Ann. 289 (1991), no. 3, 465-471. · Zbl 0746.14019 · doi:10.1007/BF01446583
[18] P. Eyssidieux, V. Guedj, and A. Zeriahi, Singular Kähler-Einstein metrics, J. Amer. Math. Soc. 22 (2009), 607-639. · Zbl 1215.32017 · doi:10.1090/S0894-0347-09-00629-8
[19] M. Green and P. Griffiths, “Two applications of algebraic geometry to entire holomorphic mappings” in The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), Springer, New York, 1980, 41-74. · Zbl 0508.32010
[20] H. Guenancia, Kähler-Einstein metrics with cone singularities on klt pairs, Internat. J. Math. 24 (2013), no. 5, p. 1350035, 19. · Zbl 1276.32019 · doi:10.1142/S0129167X13500353
[21] H. Guenancia and M. Păun, Conic singularities metrics with prescribed Ricci curvature: the case of general cone angles along normal crossing divisors, J. Differential Geom. 103 (2016), no. 1, 15-57. · Zbl 1344.53053
[22] S. Keel and J. McKernan, Rational curves on quasi-projective surfaces, Mem. Amer. Math. Soc. 140 (1999), no. 669. · Zbl 0955.14031 · doi:10.1090/memo/0669
[23] J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math. 134, Cambridge University Press, Cambridge, 1998. · Zbl 0926.14003 · doi:10.1017/CBO9780511662560
[24] S. Lang, Hyperbolic and Diophantine analysis, Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2, 159-205. · Zbl 0602.14019 · doi:10.1090/S0273-0979-1986-15426-1
[25] R. Lazarsfeld, Positivity in Algebraic Geometry, I. Classical Setting: Line Bundles and Linear Series, Ergeb. Math. Grenzgeb. (3) 48, Springer, Berlin, 2004. · Zbl 1093.14501 · doi:10.1007/978-3-642-18808-4
[26] S. S. Y. Lu and D.-Q. Zhang, Positivity criteria for log canonical divisors and hyperbolicity, J. Reine Angew. Math. 726 (2017), 173-186. · Zbl 1361.14005 · doi:10.1515/crelle-2015-0013
[27] M. McQuillan, Diophantine approximations and foliations, Inst. Hautes Études Sci. Publ. Math. (1998), no. 87, 121-174. · Zbl 1006.32020
[28] M. McQuillan and G. Pacienza, Remarks about bubbles, preprint, arXiv:1211.0203 [math.AG].
[29] S. Mori and S. Mukai, “The uniruledness of the moduli space of curves of genus 11” in Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., 1016, Springer, Berlin, 1983, 334-353. · Zbl 0557.14015 · doi:10.1007/BFb0099970
[30] G. Pacienza, Subvarieties of general type on a general projective hypersurface, Trans. Amer. Math. Soc. 356 (2004), no. 7, 2649-2661. · Zbl 1056.14060 · doi:10.1090/S0002-9947-03-03250-1
[31] H. L. Royden, The Ahlfors-Schwarz lemma in several complex variables, Comment. Math. Helv. 55 (1980), no. 4, 547-558. · Zbl 0484.53053 · doi:10.1007/BF02566705
[32] Y.-T. Siu, Hyperbolicity of generic high-degree hypersurfaces in complex projective space, Invent. Math. 202 (2015), no. 3, 1069-1166. · Zbl 1333.32020 · doi:10.1007/s00222-015-0584-x
[33] V. Tosatti and X. Yang, An extension of a theorem of Wu-Yau, J. Differential Geom. 107 (2017), no. 3, 573-579. · Zbl 1421.53075 · doi:10.4310/jdg/1508551226
[34] C. Voisin, On a conjecture of Clemens on rational curves on hypersurfaces, J. Differential Geom. 44 (1996), no. 1, 200-213. · Zbl 0883.14022
[35] D. Wu and S.-T. Yau, Negative holomorphic curvature and positive canonical bundle, Invent. Math. 204 (2016), no. 2, 595-604. · Zbl 1357.53085 · doi:10.1007/s00222-015-0621-9
[36] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I., Commun. Pure Appl. Math. 31 (1978), 339-411. · Zbl 0369.53059 · doi:10.1002/cpa.3160310304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.