×

Anderson-Bernoulli localization at large disorder on the 2D lattice. (English) Zbl 1494.82011

Summary: We consider the Anderson model at large disorder on \(\mathbb{Z}^2\) where the potential has a symmetric Bernoulli distribution. We prove that Anderson localization happens outside a small neighborhood of finitely many energies. These finitely many energies are Dirichlet eigenvalues of the minus Laplacian restricted on some finite subsets of \(\mathbb{Z}^2\).

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
82B43 Percolation
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60G60 Random fields
35P15 Estimates of eigenvalues in context of PDEs

References:

[1] Aizenman, M.; Barsky, D., Sharpness of the Phase Transition in Percolation Models, Comm. Math. Phys., 108, 3, 489-526 (1987) · Zbl 0618.60098 · doi:10.1007/BF01212322
[2] Anderson, P., Absence of diffusion in certain random lattices, Phys. Rev., 109, 5, 1492 (1958) · doi:10.1103/PhysRev.109.1492
[3] Aizenman, M.; Warzel, S., Random Operators (2015), New York: American Mathematical Soc., New York · Zbl 1333.82001 · doi:10.1090/gsm/168
[4] Bourgain, J.; Kenig, C., On localization in the continuous Anderson-Bernoulli model in higher dimension, Invent. Math., 161, 2, 389-426 (2005) · Zbl 1084.82005 · doi:10.1007/s00222-004-0435-7
[5] Buhovsky, L., Logunov, A., Malinnikova, E., Sodin, M.: A discrete harmonic function bounded on a large portion of \({\mathbb{Z}}^2\) is constant. 2017, arXiv:1712.07902 · Zbl 1494.31002
[6] Bourgain, J., Anderson-Bernoulli models., Mosc. Math. J., 5, 3, 523-536 (2005) · Zbl 1114.82016 · doi:10.17323/1609-4514-2005-5-3-523-536
[7] Carmona, R.; Klein, A.; Martinelli, F., Anderson localization for Bernoulli and other singular potentials, Commun. Math. Phys., 108, 1, 41-66 (1987) · Zbl 0615.60098 · doi:10.1007/BF01210702
[8] Ding, J.; Smart, C., Localization near the edge for the Anderson Bernoulli model on the two dimensional lattice, Invent. Math., 219, 2, 467-506 (2020) · Zbl 1448.60148 · doi:10.1007/s00222-019-00910-4
[9] Fröhlich, J.; Martinelli, F.; Scoppola, E.; Spencer, T., Constructive proof of localization in the Anderson tight binding model, Commun. Math. Phys., 101, 1, 21-46 (1985) · Zbl 0573.60096 · doi:10.1007/BF01212355
[10] Fröhlich, J.; Spencer, T., Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Commun. Math. Phys., 88, 2, 151-184 (1983) · Zbl 0519.60066 · doi:10.1007/BF01209475
[11] Germinet, F.; Klein, A., A comprehensive proof of localization for continuous Anderson models with singular random potentials, J. Eur. Math. Soc., 15, 1, 53-143 (2011) · Zbl 1267.82066 · doi:10.4171/JEMS/356
[12] Grimmett, G.: Percolation, vol. 321, 2nd edn. Springer, Berlin Heidelberg (1999) · Zbl 0926.60004
[13] Grimmett, G.; Stacey, A., Critical probabilities for site and bond percolation models, Ann. Probab., 26, 4, 1788-1812 (1998) · Zbl 0935.60097 · doi:10.1214/aop/1022855883
[14] Kato, T., Perturbation Theory for Linear Operators (2013), New York: Springer, New York
[15] Kirsch, W.: An invitation to random schrödinger operators. In: Random Schrödinger Operators. volume 25 of Panoramas et Syntheses, pp. 1-119. Soc. Math. France, Paris (2008) · Zbl 1162.82004
[16] Li, L., Zhang, L.: Anderson-Bernoulli localization on the 3d lattice and discrete unique continuation principle (2019). arXiv:1906.04350
[17] Marcus, A., Spielman, D., Srivastava, N.: Ramanujan graphs and the solution of the Kadison-Singer problem. In: Sun Young Jang, Young Rock Kim, Dae-Woong Lee, and Ikkwon Yie, editors, Invited Lectures, Proceeding of the International Congress of Mathematicans, ICM 2014, pages 363-386. KYUNG MOON SA Co. Ltd. (2014) · Zbl 1373.05108
[18] Naor, A.; Youssef, P.; Loebl, M.; Nešetřil, J.; Thomas, R., Restricted invertibility revisited, A Journey Through Discrete Mathematics, 657-691 (2017), Cham: Springer, Cham · Zbl 1403.46013 · doi:10.1007/978-3-319-44479-6_27
[19] Odlyzko, A., On subspaces spanned by random selections of \(\pm 1\) vectors, J. Combin. Theory Ser. A, 47, 1, 124-133 (1988) · Zbl 0664.05004 · doi:10.1016/0097-3165(88)90046-5
[20] Pastur, L., Spectral properties of disordered systems in the one-body approximation, Commun. Math. Phys., 75, 2, 179-196 (1980) · Zbl 0429.60099 · doi:10.1007/BF01222516
[21] Simon, B.; Fokas, AS; Grigoryan, A.; Kibble, T., Schrödinger operators in the twenty-first century, Mathematical Physics 2000, 283-288 (2000), London: Imperial College Press, London · Zbl 1074.81521 · doi:10.1142/9781848160224_0014
[22] Tao, T.: A cheap version of the Kabatjanskii-Levenstein bound for almost orthogonal vectors. https://terrytao.wordpress.com, (July 2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.