×

Effect of agglomeration of the nanotubes on the vibration frequency of the multi-scale hybrid nanocomposite conical shells: a GDQ-based study. (English) Zbl 1494.74031


MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K25 Shells
74E30 Composite and mixture properties
74M25 Micromechanics of solids
74Q10 Homogenization and oscillations in dynamical problems of solid mechanics
74S99 Numerical and other methods in solid mechanics
Full Text: DOI

References:

[1] Shi, D-L; Feng, X-Q; Huang, YY, The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites, J Eng Mater Technol, 126, 3, 250-257 (2004) · doi:10.1115/1.1751182
[2] Ke, L-L; Yang, J.; Kitipornchai, S., Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams, Compos Struct, 92, 3, 676-683 (2010) · doi:10.1016/j.compstruct.2009.09.024
[3] Shen, H-S., Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells, Compos Part B: Eng, 43, 3, 1030-1038 (2012) · doi:10.1016/j.compositesb.2011.10.004
[4] Wang, Z-X; Shen, H-S., Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments, Nonlinear Dyn, 70, 1, 735-754 (2012) · doi:10.1007/s11071-012-0491-2
[5] Alibeigloo, A.; Liew, KM., Thermoelastic analysis of functionally graded carbon nanotube-reinforced composite plate using theory of elasticity, Compos Struct, 106, 873-881 (2013) · doi:10.1016/j.compstruct.2013.07.002
[6] Lei, ZX; Liew, KM; Yu, JL., Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment, Compos Struct, 106, 128-138 (2013) · doi:10.1016/j.compstruct.2013.06.003
[7] Ansari, R.; Faghih Shojaei, M.; Mohammadi, V., Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams, Compos Struct, 113, 316-327 (2014) · doi:10.1016/j.compstruct.2014.03.015
[8] Lei, ZX; Zhang, LW; Liew, KM, Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method, Compos Struct, 113, 328-338 (2014) · doi:10.1016/j.compstruct.2014.03.035
[9] Alibeigloo, A.; Emtehani, A., Static and free vibration analyses of carbon nanotube-reinforced composite plate using differential quadrature method, Meccanica, 50, 1, 61-76 (2015) · Zbl 1329.74107 · doi:10.1007/s11012-014-0050-7
[10] Jam, JE; Kiani, Y., Buckling of pressurized functionally graded carbon nanotube reinforced conical shells, Compos Struct, 125, 586-595 (2015) · doi:10.1016/j.compstruct.2015.02.052
[11] Zhang, L.; Liew, K., Large deflection analysis of FG-CNT reinforced composite skew plates resting on Pasternak foundations using an element-free approach, Compos Struct, 132, 974-983 (2015) · doi:10.1016/j.compstruct.2015.07.017
[12] Ansari, R.; Pourashraf, T.; Gholami, R., Analytical solution for nonlinear postbuckling of functionally graded carbon nanotube-reinforced composite shells with piezoelectric layers, Compos Part B: Eng, 90, 267-277 (2016) · doi:10.1016/j.compositesb.2015.12.012
[13] Ansari, R.; Torabi, J., Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading, Compos Part B: Eng, 95, 196-208 (2016) · doi:10.1016/j.compositesb.2016.03.080
[14] Civalek, Ö., Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method, Compo Part B: Eng, 111, 45-59 (2017) · doi:10.1016/j.compositesb.2016.11.030
[15] Song, Z.; Zhang, L.; Liew, K., Dynamic responses of CNT reinforced composite plates subjected to impact loading, Compos Part B: Eng, 99, 154-161 (2016) · doi:10.1016/j.compositesb.2016.06.034
[16] Tornabene, F.; Fantuzzi, N.; Bacciocchi, M., Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells, Compos Part B: Eng, 89, 187-218 (2016) · doi:10.1016/j.compositesb.2015.11.016
[17] Zhang, L.; Liew, K.; Reddy, J., Postbuckling analysis of bi-axially compressed laminated nanocomposite plates using the first-order shear deformation theory, Compos Struct, 152, 418-431 (2016) · doi:10.1016/j.compstruct.2016.05.040
[18] Ebrahimi, F.; Farazmandnia, N., Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory, Mech Adv Mater Struct, 24, 10, 820-829 (2017) · doi:10.1080/15376494.2016.1196786
[19] Ebrahimi, F.; Habibi, S., Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment, Adv Nano Res, 5, 2, 69-97 (2017)
[20] Wang, Q.; Cui, X.; Qin, B., Vibration analysis of the functionally graded carbon nanotube reinforced composite shallow shells with arbitrary boundary conditions, Compos Struct, 182, 364-379 (2017) · doi:10.1016/j.compstruct.2017.09.043
[21] Zhu, F.; Park, C.; Jin Yun, G., An extended Mori-Tanaka micromechanics model for wavy CNT nanocomposites with interface damage, Mech Adv Mater Struct, 1-13 (2019) · doi:10.1080/15376494.2018.1562135
[22] Ebrahimi, F.; Dabbagh, A., A comprehensive review on modeling of nanocomposite materials and structures, J Comput Appl Mech, 50, 1, 197-209 (2019)
[23] Rafiee, M.; Liu, X.; He, X., Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates, J Sound Vib, 333, 14, 3236-3251 (2014) · doi:10.1016/j.jsv.2014.02.033
[24] He, X.; Rafiee, M.; Mareishi, S., Large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams, Compos Struct, 131, 1111-1123 (2015) · doi:10.1016/j.compstruct.2015.06.038
[25] Ebrahimi, F.; Habibi, S., Nonlinear eccentric low-velocity impact response of a polymer-carbon nanotube-fiber multiscale nanocomposite plate resting on elastic foundations in hygrothermal environments, Mech Adv Mater Struct, 25, 5, 425-438 (2018) · doi:10.1080/15376494.2017.1285453
[26] Rafiee, M.; Nitzsche, F.; Labrosse, MR., Modeling and mechanical analysis of multiscale fiber-reinforced graphene composites: nonlinear bending, thermal post-buckling and large amplitude vibration, Int J Non Linear Mech, 103, 104-112 (2018) · doi:10.1016/j.ijnonlinmec.2018.05.004
[27] Ebrahimi, F.; Dabbagh, A., On thermo-mechanical vibration analysis of multi-scale hybrid composite beams, J Vib Control, 25, 4, 933-945 (2019) · doi:10.1177/1077546318806800
[28] Dabbagh, A.; Rastgoo, A.; Ebrahimi, F., Finite element vibration analysis of multi-scale hybrid nanocomposite beams via a refined beam theory, Thin-Walled Struct, 140, 304-317 (2019) · doi:10.1016/j.tws.2019.03.031
[29] Ebrahimi, F.; Dabbagh, A., Vibration analysis of multi-scale hybrid nanocomposite plates based on a Halpin-Tsai homogenization model, Compos Part B: Eng, 173, 106955 (2019) · doi:10.1016/j.compositesb.2019.106955
[30] Ebrahimi, F.; Dabbagh, A., An analytical solution for static stability of multi-scale hybrid nanocomposite plates, Eng Comput, 1-15 (2019) · doi:10.1007/s00366-019-00840-y
[31] Ebrahimi, F.; Dabbagh, A.; Rastgoo, A., Free vibration analysis of multi-scale hybrid nanocomposite plates with agglomerated nanoparticles, Mech Based Des Struct Mach, 1-24 (2019) · doi:10.1080/15397734.2019.1692665
[32] Dabbagh, A.; Rastgoo, A.; Ebrahimi, F., Static stability analysis of agglomerated multi-scale hybrid nanocomposites via a refined theory, Eng Comput (2020) · doi:10.1007/s00366-020-00939-7
[33] Ebrahimi, F.; Dabbagh, A.; Rastgoo, A., Agglomeration effects on static stability analysis of multi-scale hybrid nanocomposite plates, Comput, Mater Continua, 62, 1, 41-64 (2020) · doi:10.32604/cmc.2020.07947
[34] Dabbagh, A.; Rastgoo, A.; Ebrahimi, F., Thermal buckling analysis of agglomerated multiscale hybrid nanocomposites via a refined beam theory, Mech Based Des Struct Mach, 1-27 (2020) · doi:10.1080/15397734.2019.1692666
[35] Alva, A.; Bhagat, A.; Raja, S., Effective moduli evaluation of carbon nanotube reinforced polymers using micromechanics, Mech Adv Mater Struct, 22, 10, 819-828 (2015) · doi:10.1080/15376494.2013.864434
[36] Jarali, C.; Basavaraddi, SR; Pilli, SC, Modeling the hygro-thermo-mechanical agglomeration relations of carbon-epoxy hybrid nanocomposites, Int J Multiscale Comput Eng, 13, 3, 231-248 (2015) · doi:10.1615/IntJMultCompEng.2015012650
[37] Fantuzzi, N.; Tornabene, F.; Bacciocchi, M., Free vibration analysis of arbitrarily shaped functionally graded carbon nanotube-reinforced plates, Compos Part B: Eng, 115, 384-408 (2017) · doi:10.1016/j.compositesb.2016.09.021
[38] Wang, L.; Hu, H., Flexural wave propagation in single-walled carbon nanotubes, Phys Rev B, 71, 19, 195412 (2005) · doi:10.1103/PhysRevB.71.195412
[39] Jarali, CS; Basavaraddi, SR; Kiefer, B., Modeling of the effective elastic properties of multifunctional carbon nanocomposites due to agglomeration of straight circular carbon nanotubes in a polymer matrix, J Appl Mech, 81, 2, 1-11 (2013)
[40] Shi, X.; Hassanzadeh-Aghdam, MK; Ansari, R., A comprehensive micromechanical analysis of the thermoelastic properties of polymer nanocomposites containing carbon nanotubes with fully random microstructures, Mech Adv Mater Struct, 1-12 (2019) · doi:10.1080/15376494.2018.1564852
[41] Zeighampour, H.; Tadi Beni, Y., Analysis of conical shells in the framework of coupled stresses theory, Int J Eng Sci, 81, 107-122 (2014) · Zbl 1423.74587 · doi:10.1016/j.ijengsci.2014.04.008
[42] Ansari, R.; Hasrati, E.; Torabi, J., Nonlinear vibration response of higher-order shear deformable FG-CNTRC conical shells, Compos Struct, 222, 110906 (2019) · doi:10.1016/j.compstruct.2019.110906
[43] Heydarpour, Y.; Aghdam, MM; Malekzadeh, P., Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells, Compos Struct, 117, 187-200 (2014) · doi:10.1016/j.compstruct.2014.06.023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.