×

Some sufficient conditions for compactness of linear Hammerstein integral operators and applications. (English) Zbl 1494.45017

The paper is concerned with the study of integral kernel operators on \(L^{p}(\Omega )\), where \(\Omega \) is a measurable subset of \(\mathbb{R}^{n}\). The main goal of the paper is to generalize existing sufficient conditions for such operators to map \(L^{p}(\Omega )\) into the space \(C(D)\) of continuous functions on a bounded closed set \(D\subseteq \Omega \), and to be compact. These conditions are expressed in terms of continuity and “sequential dominatedness” of the kernels.

MSC:

45P05 Integral operators
28A25 Integration with respect to measures and other set functions
47B38 Linear operators on function spaces (general)
Full Text: DOI

References:

[1] Aliprantis, CD; Burkinshaw, O., Principles of Real Analysis (1998), San Diego: Academic Press, San Diego · Zbl 1006.28001
[2] Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18, 620-709 (1976) · Zbl 0345.47044 · doi:10.1137/1018114
[3] Billingsley, P., Probability and Measure, Wiley Series in Probability and Mathematical Statistics (1995), New York: Wiley, New York · Zbl 0822.60002
[4] Border, K.C.: Differentiating an integral: Leibniz’s Rule (2016). http://www.its.caltech.edu/ kcborder/Notes/LeibnizRule.pdf
[5] Cianciaruso, F.; Infante, G.; Pietramala, P., Solutions of perturbed Hammerstein integral equations with applications, Nonlinear Anal. Real World Appl., 33, 317-347 (2017) · Zbl 1351.45006 · doi:10.1016/j.nonrwa.2016.07.004
[6] Cohen, DS; Laetsch, TW, Nonlinear boundary value problems suggested by chemical reactor theory, J. Differ. Equ., 7, 217-226 (1970) · Zbl 0201.43102 · doi:10.1016/0022-0396(70)90106-3
[7] Cohen, DS, Multiple stable solutions of nonlinear boundary value problems arising in chemical reactor theory, SIAM J. Appl. Math., 20, 1, 1-13 (1971) · Zbl 0219.34027 · doi:10.1137/0120001
[8] Dieudonné, J.: Foundations of modern analysis. In: Number 10-I in Pure and Applied Mathematics, New York: Academic Press. Volume 1 of Treatise on Analysis (1969) · Zbl 0176.00502
[9] Eloe, PW; Masthay, T., Initial value problems for Caputo fractional differential equations, J. Fract. Calc. Appl., 9, 178-195 (2018) · Zbl 1499.34044
[10] Erbe, LH; Hu, S.; Wang, H., Multiple positive solutions of some boundary value problems, J. Math. Anal. Appl., 184, 640-648 (1994) · Zbl 0805.34021 · doi:10.1006/jmaa.1994.1227
[11] Franco, D.; Infante, G.; O’Regan, D., Nontrivial solutions in abstract cones for Hammerstein integral systems, Dyn. Contin. Discrete Impuls. Syst. Ser. A, 14, 837-850 (2007) · Zbl 1139.45004
[12] Goodrich, CS, Pointwise conditions for perturbed Hammerstein integral equations with monotone nonlinear, nonlocal elements, Banach J. Math. Anal., 14, 290-312 (2020) · Zbl 1524.45005 · doi:10.1007/s43037-019-00017-1
[13] Goodrich, CS, Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett., 23, 1050-1055 (2010) · Zbl 1204.34007 · doi:10.1016/j.aml.2010.04.035
[14] Halmos, PR, Measure Theory (1974), New York: Springer, New York · Zbl 0283.28001
[15] Junghenn, HD, Principles of Real Analysis: Measure, Integration, Functional Analysis, and Applications (2018), New York: Chapman and Hall/CRC, New York · Zbl 1408.28001
[16] Krasnosel’skii, MA, Positive Solutions of Operator Equations (1964), Groningen: Noordhoff, Groningen · Zbl 0121.10604
[17] Krasnosel’skii, MA; Zabreiko, PP, Geometrical Methods of Nonlinear Analysis (1984), Berlin: Springer, Berlin · Zbl 0546.47030 · doi:10.1007/978-3-642-69409-7
[18] Lan, KQ, Multiple positive solutions of Hammerstein integral equations with singularities, Differ. Equ. Dyn. Syst., 8, 2, 175-192 (2000) · Zbl 0977.45001
[19] Lan, KQ, Multiple positive solutions of semilinear differential equations with singularities, J. Lond. Math. Soc., 63, 2, 690-704 (2001) · Zbl 1032.34019 · doi:10.1112/S002461070100206X
[20] Lan, KQ, Eigenvalues of semi-positone Hammerstein integral equations and applications to boundary value problems, Nonlinear Anal., 71, 5979-5993 (2009) · Zbl 1186.45002 · doi:10.1016/j.na.2009.05.022
[21] Lan, KQ, Compactness of Riemann-Liouville fractional integral operators, Electron. J. Qual. Theory Differ. Equ., 84, 1-15 (2020) · Zbl 1488.45060 · doi:10.14232/ejqtde.2020.1.84
[22] Lan, KQ; Lin, W., Multiple positive solutions of systems of Hammerstein integral equations with applications to fractional differential equations, J. Lond. Math. Soc., 83, 2, 449-469 (2011) · Zbl 1215.45004 · doi:10.1112/jlms/jdq090
[23] Lan, KQ; Lin, W., Steady-state solutions of one dimensional competition models in an unstirred chemostat via the fixed point index theory, Proc. R. Soc. Edinb. Sect. A, 151, 240-264 (2021) · Zbl 1468.45004 · doi:10.1017/prm.2020.12
[24] Lan, KQ; Webb, JRL, A fixed point index for generalized inward mappings of condensing type, Trans. Am. Math. Soc., 349, 2175-2186 (1997) · Zbl 0878.47045 · doi:10.1090/S0002-9947-97-01939-9
[25] Lan, KQ; Webb, JRL, Positive solutions of semilinear differential equations with singularities, J. Differ. Equ., 148, 407-421 (1998) · Zbl 0909.34013 · doi:10.1006/jdeq.1998.3475
[26] Lang, S., Real and Functional Analysis, Graduate Texts in Mathematics (1993), New York: Springer, New York · Zbl 0831.46001 · doi:10.1007/978-1-4612-0897-6
[27] Leggett, RW; Williams, LR, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28, 673-688 (1979) · Zbl 0421.47033 · doi:10.1512/iumj.1979.28.28046
[28] Martin, RH, Nonlinear Operators and Differential Equations in Banach Spaces (1976), New York: Wiley, New York · Zbl 0333.47023
[29] Webb, JRL, Initial value problems for Caputo fractional equations with singular nonlinearities, Electr. J. Differ. Equ., 117, 1-32 (2019) · Zbl 1425.34029
[30] Webb, J.R.L.: Compactness of nonlinear integral operators with discontinuous and with singular kernels. J. Math. Anal. Appl. 509, 126000 (2022) · Zbl 07473008
[31] Webb, JRL; Lan, KQ, Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type, Topol. Methods Nonlinear Anal., 27, 1, 91-116 (2006) · Zbl 1146.34020
[32] Yang, GC; Lan, KQ, Newtonian potential and positive solutions of Poisson equations, Nonlinear Anal., 196 (2020) · Zbl 1436.35088 · doi:10.1016/j.na.2020.111811
[33] Yu, X., Lan, K.Q., Wu, J.H.: Green’s functions, linear second order differential equations and one-dimensional diffusion advection models. Stud. Appl. Math. 1-44 (2021). doi:10.1111/sapm.12384 · Zbl 1500.34022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.