×

A classification up to algebra isomorphism of the ramified minimal ring extensions of a principal ideal ring. (English) Zbl 1494.13011

Author’s abstract: For any (unital commutative) principal ideal ring \(A\), The author produced a set of \(A\)-algebra isomorphism class representatives of the ramified (unital minimal) ring extensions of \(A\). Special attention is paid to the case of a finite principal ideal ring. The first step in this process involves sharpening some of the author’s earlier results from the case where \(A\) is a finite special principal ideal ring. One consequence of this work is the completion of the classification, up to ring isomorphism, of the commutative (unital) rings having a unique proper (unital) subring.

MSC:

13B99 Commutative ring extensions and related topics
13B21 Integral dependence in commutative rings; going up, going down
13F10 Principal ideal rings
13G05 Integral domains
13M99 Finite commutative rings

References:

[1] D. E. Dobbs, On the commutative rings with at most two proper subrings, Int. J. Math. Math. Sci., volume 2016 (2016), Article ID 6912360, 13 pages. DOI: 10.1155/2016/6912360. · Zbl 1441.13019
[2] D. E. Dobbs, Certain towers of ramified minimal ring extensions of commutative rings, Comm. Algebra, 46 (8) (2018), 3461-3495. DOI: 10.1080/00927872.2017.1412446. · Zbl 1402.13011
[3] D. E. Dobbs, A minimal ring extension of a large finite local prime ring is probably ramified, J. Algebra Appl., 19 (1) (2020), 2050015 (27 pages). DOI: 10.1142/S0219498820500152. · Zbl 1440.13044
[4] D. E. Dobbs, Characterizing finite fields via minimal ring extensions, Comm. Algebra, 47 (2019), 4945- 4957. DOI: 10.1080/00927872.2019.1603303. · Zbl 1427.13006
[5] D. E. Dobbs, On the nature and number of the minimal ring extensions of a finite commutative ring, Comm. Algebra, 48 (9) (2020), 3811-3833. DOI: 10.1080/00927872.2020.1748193. · Zbl 1457.13017
[6] D. E. Dobbs and N. Jarboui, Characterizing finite Boolean rings by using finite chains of subrings, Gulf J. Math., 10 (1) (2021), 69-94. · Zbl 1479.16019
[7] D. E. Dobbs, B. Mullins, G. Picavet and M. Picavet-L’Hermitte, On the FIP property for extensions of commutative rings, Comm. Algebra, 33 (2005), 3091-3119. · Zbl 1120.13009
[8] D. E. Dobbs and J. Shapiro, A classification of the minimal ring extensions of an integral domain, J. Algebra, 305 (2006), 185-193. · Zbl 1107.13010
[9] D. E. Dobbs and J. Shapiro, A classification of the minimal ring extensions of certain commutative rings, J. Algebra, 308 (2007), 800-821. · Zbl 1118.13004
[10] D. Ferrand and J.-P. Olivier, Homomorphismes minimaux d’anneaux, J. Algebra, 16 (1970), 461-471. · Zbl 0218.13011
[11] R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972. · Zbl 0248.13001
[12] J. A. Huckaba, Commutative Rings with Zero Divisors, Dekker, New York, 1988. · Zbl 0637.13001
[13] I. Kaplansky, Commutative Rings, rev. ed., Univ. Chicago Press, Chicago, 1974. · Zbl 0296.13001
[14] A. A. Klein, The finiteness of a ring with a finite maximal subring, Comm. Algebra, 21 (4) (1993), 1389-1392. · Zbl 0793.16009
[15] T. J. Laffey, A finiteness theorem for rings, Proc. Roy. Irish Acad. Sect. A, 92 (2) (1992), 285-288. · Zbl 0792.16005
[16] B. R. McDonald, Finite Rings with Identity, Dekker, New York, 1974. · Zbl 0294.16012
[17] J. Sato, T. Sugatani and K. Yoshida, On minimal overrings of a Noetherian domain, Comm. Algebra, 20 (1992), 1735-1746. · Zbl 0747.13017
[18] O. Zariski and P. Samuel, Commutative Algebra, Volume I, Van Nostrand, Princeton-Toronto-London, 1958 · Zbl 0081.26501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.