×

Semistable abelian varieties and maximal torsion 1-crystalline submodules. (English. French summary) Zbl 1494.11093

Suppose that \(K\) is a discretely valued extension of \(\mathbb{Q}_p\) and \(A_K\) is an abelian variety over \(K\) with semistable reduction. The Néron component group \(\Phi_{A_K}\) is the group of connected components of the special fibre of the Néron model. It is a finite abelian group and its \(l\)-primary part is computed in SGA7. The method fails for the \(p\)-primary part, because it describes an isomorphism between the unramified \(\mathbb{Z}_l{\operatorname{Gal}}(\overline K/K)\)-modules \(\Phi_{A_K}[l^\infty]\) and a piece of Galois cohomology. The latter is “too small” at the \(p\)-torsion part, but M. Kim and S. H. Marshall [Math. Res. Lett. 7, No. 5–6, 605–614 (2000; Zbl 0979.11034)] fixed this by instead looking at the functor \({\operatorname{Crys}}_1\) that takes a \(p\)-adic Galois module to its maximal \(1\)-crystalline submodule, and applying the derived functor of that to the Tate module \(T_pA_K\). Their method works for \(p\) odd, and as long as \(K\) is an unramified extension, and the effect of this paper is to remove those restrictions.
To do this, the author finds, as Kim and Marshall did, a finite flat \({\mathcal O}_K\)-group \(Q_{p^m}\) whose generic fibre is \({\operatorname{Crys}}_1(A_K[p^m])\), but by a more direct and constructive approach using the Néron model.
Crucial ingredients in the rather technical proof are the results of M. Kim and S. H. Marshall [Math. Res. Lett. 7, No. 5–6, 605–614 (2000; Zbl 0979.11034)], a full faithfulness result due to Y. Ozeki [Nagoya Math. J. 229, 169–214 (2018; Zbl 1441.11138)], and more generally the background as expounded by S. H. Marshall in her PhD thesis [Crystalline representations and Néron models. Tucson: University of Arizona (PhD Thesis) (2001)].

MSC:

11R34 Galois cohomology
11R33 Integral representations related to algebraic numbers; Galois module structure of rings of integers
11G10 Abelian varieties of dimension \(> 1\)
14K15 Arithmetic ground fields for abelian varieties

References:

[1] Andreatta, Fabrizio; Barbieri-Viale, Luca, Crystalline realizations of 1-motives, Math. Ann., 331, 1, 111-172 (2005) · Zbl 1101.14018 · doi:10.1007/s00208-004-0576-4
[2] Beilinson, Alexander; Tavares Ribeiro, Floric, On a theorem of Kisin, C. R. Math. Acad. Sci. Paris, 351, 13-14, 505-506 (2013) · Zbl 1296.11159 · doi:10.1016/j.crma.2013.04.002
[3] Bertapelle, Alessandra; Candilera, Maurizio; Cristante, Valentino, Monodromy of logarithmic Barsotti-Tate groups attached to 1-motives, J. Reine Angew. Math., 573, 211-234 (2004) · Zbl 1058.14065 · doi:10.1515/crll.2004.062
[4] Berthelot, Pierre; Breen, Lawrence; Messing, William, Théorie de Dieudonné cristalline. II, 930, x+261 p. pp. (1982), Springer · Zbl 0516.14015
[5] Bondarko, Mikhail V., Mathematisches Institut, Georg-August-Universität Göttingen: Seminars Winter Term 2004/2005, Finite flat commutative group schemes over complete discrete valuation fields: classification, structural results; application to reduction of abelian varieties, 99-108 (2005), Universitätsdrucke Göttingen · Zbl 1098.14034
[6] Bosch, Siegfried; Lütkebohmert, Werner, Degenerating abelian varieties, Topology, 30, 4, 653-698 (1991) · Zbl 0761.14015 · doi:10.1016/0040-9383(91)90045-6
[7] Bosch, Siegfried; Lütkebohmert, Werner; Raynaud, Michel, Néron models, 21, x+325 p. pp. (1990), Springer · Zbl 0705.14001
[8] Breuil, Christophe, Groupes \(p\)-divisibles, groupes finis et modules filtrés, Ann. Math., 152, 2, 489-549 (2000) · Zbl 1042.14018 · doi:10.2307/2661391
[9] Breuil, Christophe, Algebraic geometry 2000, Azumino (Hotaka), 36, Integral \(p\)-adic Hodge theory, 51-80 (2002), Mathematical Society of Japan · Zbl 1046.11085 · doi:10.2969/aspm/03610051
[10] Brinon, Olivier; Conrad, Brian, CMI Summer School Notes on \(p\)-adic Hodge Theory (2009)
[11] Coleman, Robert; Iovita, Adrian, The Frobenius and monodromy operators for curves and abelian varieties, Duke Math. J., 97, 1, 171-215 (1999) · Zbl 0962.14030 · doi:10.1215/S0012-7094-99-09708-9
[12] Dokchitser, Tim; Dokchitser, Vladimir, Local invariants of isogenous elliptic curves, Trans. Am. Math. Soc., 367, 6, 4339-4358 (2015) · Zbl 1395.11094 · doi:10.1090/S0002-9947-2014-06271-5
[13] Faltings, Gerd; Chai, Ching-Li, Degeneration of abelian varieties, 22, xii+316 p. pp. (1990), Springer · Zbl 0744.14031 · doi:10.1007/978-3-662-02632-8
[14] Fontaine, Jean-Marc, Journées de Géométrie Algébrique de Rennes. (Rennes, 1978), Vol. III, 65, Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate, 3-80 (1979), Société Mathématique de France · Zbl 0429.14016
[15] Grothendieck, Alexander, SGA7, Exposé IX, 288 (19671969), Springer
[16] Grothendieck, Alexander, Groupes de Barsotti-Tate et cristaux de Dieudonné, 45, 155 p. pp. (1974), Presses de l’Université de Montréal · Zbl 0331.14021
[17] Jannsen, Uwe, Continuous étale cohomology, Math. Ann., 280, 2, 207-245 (1988) · Zbl 0649.14011 · doi:10.1007/BF01456052
[18] Kajiwara, Takeshi; Kato, Kazuya; Nakayama, Chikara, Logarithmic abelian varieties, Part IV: Proper models, Nagoya Math. J., 219, 9-63 (2015) · Zbl 1329.14090 · doi:10.1215/00277630-3140577
[19] Kato, Kazuya, Logarithmic Dieudonné Theory · Zbl 0776.14004
[20] Kim, Minhyong; Marshall, Susan H., Crystalline subrepresentations and Néron models, Math. Res. Lett., 7, 5-6, 605-614 (2000) · Zbl 0979.11034 · doi:10.4310/MRL.2000.v7.n5.a6
[21] Kim, Wansu, The classification of \(p\)-divisible groups over 2-adic discrete valuation rings, Math. Res. Lett., 19, 1, 121-141 (2012) · Zbl 1284.14056 · doi:10.4310/MRL.2012.v19.n1.a10
[22] Kisin, Mark, Algebraic geometry and number theory, 253, Crystalline representations and \({F}\)-crystals, 459-496 (2006), Birkhäuser · Zbl 1184.11052 · doi:10.1007/978-0-8176-4532-8_7
[23] Kisin, Mark, Integral models for Shimura varieties of abelian type, J. Am. Math. Soc., 23, 4, 967-1012 (2010) · Zbl 1280.11033 · doi:10.1090/S0894-0347-10-00667-3
[24] Lan, Kai-Wen, Arithmetic compactifications of PEL-type Shimuravarieties, 36, xxvi+561 p. pp. (2013), Princeton University Press · Zbl 1284.14004 · doi:10.1515/9781400846016
[25] Lazda, Christopher; Pál, Ambrus, Rigid Cohomology over Laurent Series Fields, 21 (2016), Springer · Zbl 1400.14002 · doi:10.1007/978-3-319-30951-4
[26] Liu, Tong, Torsion \(p\)-adic Galois representations and a conjecture of Fontaine, Ann. Sci. Éc. Norm. Supér., 40, 4, 633-674 (2007) · Zbl 1163.11043
[27] Madapusi-Pera, Keerthi, Log p-divisible groups and semi-stable representations (2014)
[28] Marshall, Susan H., Crystalline representations and Néron models (2001) · Zbl 0979.11034
[29] Milne, James S., Algebraic groups, 170, xvi+644 p. pp. (2017), Cambridge University Press · Zbl 1390.14004 · doi:10.1017/9781316711736
[30] Mumford, David, An analytic construction of degenerating abelian varieties over complete rings, Compos. Math., 24, 239-272 (1972) · Zbl 0241.14020
[31] Ozeki, Yoshiyasu, On Galois equivariance of homomorphisms between torsion crystalline representations, Nagoya Math. J., 229, 169-214 (2018) · Zbl 1441.11138 · doi:10.1017/nmj.2016.68
[32] Raynaud, Michel, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Variétés abéliennes et géométrie rigide, 473-477 (1971), Gauthier-Villars · Zbl 0223.14021
[33] Raynaud, Michel, Schémas en groupes de type \((p,\dots , p)\), Bull. Soc. Math. Fr., 102, 241-280 (1974) · Zbl 0325.14020 · doi:10.24033/bsmf.1779
[34] Raynaud, Michel, Périodes \(p\)-adiques (Bures-sur-Yvette, 1988), 223, 1-motifs et monodromie géométrique, 295-319 (1994), Société Mathématique de France · Zbl 0830.14001
[35] The Stacks Project Authors, Stacks Project (2018)
[36] Tate, John T., Proc. Conf. Local Fields (Driebergen, 1966), \(p\)-divisible groups, 158-183 (1967), Springer · Zbl 0157.27601 · doi:10.1007/978-3-642-87942-5_12
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.