×

Buckling and free vibration analysis of non-prismatic columns using optimized shape functions and Rayleigh method. (English) Zbl 1493.74108

Summary: In this paper, optimized shape functions have been used in Rayleigh method to determine the critical buckling load and the fundamental natural frequency of non-prismatic steel-reinforced slender concrete columns. A range of admissible shape functions describing the mode shape in buckling as well as for the fundamental natural frequency of the column are considered and then an optimization strategy is developed to arrive at the optimum shape function. The results obtained from the present method based on the implementation of Rayleigh method through the concept of generalized coordinates are verified and validated by the finite element method. The application of the theory is demonstrated by two illustrative examples, both of which are steel-reinforced concrete towers that are representative of practical structures. Of particular significance is the duality between the free vibration and buckling problems which is captured and fruitfully exploited in the analysis. The effect of an additional mass located at the top of the tower is included in the investigation. Additionally, the impact of the creep behavior of the towers on results due to continuing lapse of time is critically examined and assessed. Finally, significant conclusions are drawn following the discussion of results.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74S99 Numerical and other methods in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74G60 Bifurcation and buckling
74H45 Vibrations in dynamical problems in solid mechanics

Software:

SAP2000

References:

[1] NBR 6118:2014 - Design of Structural Concrete - Procedure (2014), Rio de Janeiro
[2] Prestandard and Commentary for the Seismic Rehabilitation of Buildings, vol. 356 (2000), FEMA: FEMA Washington
[3] Alijani, A.; Barrera, O.; Bordas, S. P.A., Circumferential crack modeling of thin cylindrical shells in modal deformation, Eur. J. Mech. Solid., 90, 104360 (2021) · Zbl 1486.74119
[4] Arora, J. S., Introduction to Optimum Design (2016), Elsevier
[5] Banerjee, J. R.; Jackson, D. R., Free vibration of a rotating tapered Rayleigh beam: a dynamic stiffness method of solution, Comput. Struct., 124, 11-20 (2013)
[6] Banerjee, J. R.; Ananthapuvirajah, A.; Papkov, S. O., Dynamic stiffness matrix of a conical bar using the Rayleigh-Love theory with applications, Eur. J. Mech. Solid., 83, 104020 (2020) · Zbl 1473.74053
[7] Belkacem, M. A.; Bechtoula, H.; Bourahla, N.; Belkacem, A. A., Effect of axial load and transverse reinforcements on the seismic performance of reinforced concrete columns, Front. Struct. Civ. Eng., 13, 831-851 (2019)
[8] Bert, C. W., Improved technique for estimating buckling loads, J. Eng. Mech. ASCE, 110, 12, 1655-1665 (1984)
[9] Branson, D. E., Instantaneous and Time-dependent Deflections of Simple and Continuous Reinforced Concrete Beams (1963), Department of Civil Engineering and Auburn Research Foundation Auburn University
[10] Brasil, R. M.L. R.F., The Phenomenon Location Modes in Structural Dynamics and Stability Modulated Linear Behavior or Nonlinear (1995), Polytechnic School, University of São Paulo: Polytechnic School, University of São Paulo São Paulo, Brazil, Thesis (Free Teaching)
[11] Bruyneel, M.; Duysinx, P., Note on topology optimization of continuum structures including self-weight, Struct. Multidiscip. Optim., 29, 245-256 (2005)
[12] Complementary Technical Standards for Design of Concrete Structures and Construction (2017), NTCC-17: NTCC-17 Mexico City
[13] Clough, R. W.; Penzien, J., Dynamics of Structures (2003), Computers & Structures: Computers & Structures Berkeley
[14] Colunga, A. T.; Arizmendi, H. C.; Arroyo, J. L.L.; Avilés, G. G., Seismic behavior of code-designed medium rise special moment-resisting frame RC buildings in soft soils of Mexico City, Eng. Struct., 30, 3681-3707 (2008)
[15] Daxini, S. D.; Prajapati, J. M., Numerical shape optimization based on meshless method and stochastic optimization technique, Eng. Comput., 36, 565-586 (2020)
[16] Dirichlet, G. L., Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen, J. für die Reine Angewandte Math. (Crelle’s J.), 1850, 40, 209-227 (1848), (in German) · ERAM 040.1103cj
[17] Ekeland, I., On the variational principle, J. Math. Anal. Appl., 47, 2, 324-353 (1974) · Zbl 0286.49015
[18] Euler L. De Curvis Elasticis, Additamentum I to His Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes. Lausanne and Geneva, 1744.
[19] European Standard. EN 1992-1-1 - Eurocode 2: Design of Concrete Structures — Part 1: General Rules and Rules for Buildings (2004), Brussels
[20] Ferretti, M.; D’Annibale, F.; Luongo, A., Buckling of tower buildings on elastic foundation under compressive tip forces and self-weight, Continuum Mech. Therm., 1-21 (2020)
[21] Fu, J. F.; Fenton, R. G.; Cleghorn, W. L., A mixed integer-discrete-continuous programming method and its application to engineering design optimization, Eng. Optim., 17, 4, 263-280 (1991)
[22] Galerkin, B. G., Rods and plates. Series occurring in various questions concerning the elastic equilibrium of rods and plates, Eng. Bull., 19, 897-908 (1915), (in Russian)
[23] Geng, Y.; Ranzi, G.; Wang, Y.; Zhang, S., Time-dependent behaviour of concrete-filled steel tubular columns: analytical and comparative study, Mag. Concr. Res., 64, 1, 55-69 (2015)
[24] Gilbert, R. I.; Ranzi, G., Time-dependent Behaviour of Concrete Structures (2011), CRC Press: CRC Press London
[25] Greenhill, A. G., Determination of the greatest height consistent with stability that a vertical pole or mast can be made, and the greatest height to which a tree of given proportions can grow, Proceed. Cambridge Philos. Soc., 1, 1, 337-338 (1882)
[26] Hamed, M. A.; Abo-bakr, R. M.; Mohamed, S. A.; Eltahe, M. A., Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core, Eng. Comput., 36, 1929-1946 (2020)
[27] Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures (2008), Farmington Hills
[28] Kara, I. F.; Dundar, C., Three-dimensional analysis of tall reinforced concrete buildings with nonlinear cracking effects, Mech. Base. Des. Struct. Mach., 38, 3, 388-402 (2010)
[29] Kharghani, N.; Soares, C. G., Experimental, numerical and analytical study of buckling of rectangular composite laminates, Eur. J. Mech. Solid., 79, 103869 (2020) · Zbl 1484.74024
[30] Kurrer, K. E., The History of the Theory of Structures: Searching for Equilibrium (2018), Wiley: Wiley Berlin
[31] Lapi, M.; Orlando, M.; Spinelli, P., A review of literature and code formulations for cracking in R/C members, Struct. Concr., 19, 5, 1481-1503 (2017)
[32] Leissa, A. W., The historical bases of the Rayleigh and Ritz methods, J. Sound Vib., 287, 4-5, 961-978 (2005), 4
[33] Li, Y.; Tian, K.; Hao, P.; Wang, B., Optimization design for vibration reduction of complex configuration structures via global reduced-order basis, Eng. Optim., 1-15 (2020)
[34] Lindgaard, E.; Lund, E., Optimization formulations for the maximum nonlinear buckling load of composite structures, Struct. Multidiscip. Optim., 43, 631-646 (2011) · Zbl 1274.74121
[35] Liu, J.; Zhuc, W. D.; Charalambides, P. G.; Shao, Y. M.; Xu, Y. F.; Fang, X. M., A dynamic model of a cantilever beam with a closed, embedded horizontal crack including local flexibilities at crack tips, J. Sound Vib., 382, 274-290 (2016)
[36] Marin, M. C.; El Debs, M. K., Contribution to assessing the stiffness reduction of structural elements in the global stability analysis of precast concrete multi-story buildings, J. IBRACON Struct. Mater., 5, 3, 316-342 (2012)
[37] Mochida, Y.; Ilanko, S., On the Rayleigh-Ritz Method, Gorman’s Superposition Method and the exact Dynamic Stiffness Method for vibration and stability analysis of continuous systems, Thin-Walled Struct., 161, 107470 (2021)
[38] Muc, A.; Kędziora, P.; Stawiarski, A., Buckling enhancement of laminated composite structures partially covered by piezoelectric actuators, Eur. J. Mech. Solid., 73, 112-125 (2019) · Zbl 1406.74254
[39] Neves, M. M.; Rodrigues, H.; Guedes, J. M., Generalized topology design of structures with a buckling load criterion, Struct. Multidiscip. Optim., 10, 71-78 (1995)
[40] Nikolić, A.; Šalinic, S., Buckling analysis of non-prismatic columns: a rigid multibody approach, Eng. Struct., 143, 511-521 (2017)
[41] Oden, J. T., Finite Elements of Nonlinear Continua (2013), Courier Corporation Editor: Courier Corporation Editor Massachusetts · Zbl 0235.73038
[42] Oliver, V.; Milazzo, A., A Rayleigh-Ritz approach for postbuckling analysis of variable angle tow composite stiffened panels, Comput. Struct., 196, 263-276 (2018)
[43] SAP2000. Analysis Reference Manual. Integrated Software for Structural Analysis and Design (2018), Computers and Structures, Inc.: Computers and Structures, Inc. Berkeley, California
[44] Papadopoulos, M.; Papadopoulos, L.; Garcia, E., Eigen-Analysis Using optimization with Rayleigh’s quotient, Comput. Struct., 65, 4, 551-559 (1997) · Zbl 0967.74570
[45] Rahai, A. R.; Kazemi, S., Buckling analysis of non-prismatic columns based on modified vibration modes, Commun. Nonlinear Sci. Numer. Simulat., 13, 1721-1735 (2008) · Zbl 1221.74085
[46] Rao, S. S., The Finite Element Method in Engineering (2018), Elsevier, Butterworth-Heinemann · Zbl 1376.74001
[47] Rayleigh, Theory of Sound (1877), Dover Publications: Dover Publications New York, re-issued · JFM 15.0848.02
[48] Ritto, T. G.; Sampaio, R.; Cataldo, E., Timoshenko beam with uncertainty on the boundary conditions, J. Braz. Soc. Mech. Sci. Eng., 30, 4, 295-303 (2008)
[49] Ritz, W., Uber eine neue Methode zur Lösung gewisser Variations probleme der mathematischen Physik, J. Reine Angewandte Math., 135, 1-61 (1908) · JFM 39.0449.01
[50] Ritz, W., Theorie der Transversalschwingungen einer quadratischen Platte mit freien Rändern, (annalen der physic (1909), Annalen Der Physik), (in German) · JFM 40.0881.02
[51] Sedira, L.; Hammadi, F.; Ayad, R.; Meftah, K.; Hecini, M., Discrete-Mindlin finite element for nonlinear geometrical analysis of shell structures, Comput. Appl. Math., 35, 951-975 (2016) · Zbl 1348.74326
[52] Shariff, M. N.; Saravanan, U.; Menon, D., Time-dependent strains in axially loaded reinforced concrete columns, J. Eng. Mech., 146, 8 (2020), 04020076-1-04020076-11
[53] Shen, P.; Fang, H.; Xia, X., Effect of concrete creep and shrinkage on tall hybrid-structures and its countermeasures, Front. Struct. Civ. Eng., 3, 234-239 (2009)
[54] Temple, G.; Bickley, W. G., Rayleigh’s Principle and its Applications to Engineering (1933), Oxford University Press, Humphrey Milford: Oxford University Press, Humphrey Milford London · JFM 59.1411.03
[55] Timoshenko, S. P.; Gere, J. M., Theory of Elastic Stability (1961), McGraw-Hill Book Company: McGraw-Hill Book Company New York
[56] Uzny, S., An elastically supported geometrically nonlinear slender system subjected to a specific load in respect of bifurcation load and free vibrations, Int. J. Bifurcat. Chaos Appl. Sci. Eng., 21, 10, 2983-2992 (2011) · Zbl 1270.74117
[57] Wahrhaftig, A. M., Analysis of the first modal shape using case studies, Int. J. Comput. Methods, 16, 6, 1840019-1-1840019-14 (2019) · Zbl 07073997
[58] Wahrhaftig, A. M., Time-dependent analysis of slender, tapered reinforced concrete columns, Steel Compos. Struct., 36, 2, 229-247 (2020)
[59] Wahrhaftig, A. M.; Brasil, R. M.L. R.F., Initial undamped resonant frequency of slender structures considering nonlinear geometric effects: the case of a 60.8 m-high mobile phone mast, J. Braz. Soc. Mech. Sci. Eng., 39, 725-735 (2016)
[60] Wahrhaftig, A. M.; Brasil, R. M.L. R.F., Vibration analysis of mobile phone mast system by Rayleigh method, Appl. Math. Model., 42, 330-345 (2017) · Zbl 1443.74040
[61] Wahrhaftig, A. M.; Brasil, R. M.L. R.F.; Balthazar, J. M., The first frequency of cantilevered bars with geometric effect: a mathematical and experimental evaluation, J. Braz. Soc. Mech. Sci. Eng., 35, 457-467 (2013)
[62] Wahrhaftig, A. M.; Silva, M. A.; Brasil, R. M.L. R., Analytical determination of the vibration frequencies and buckling loads of slender reinforced concrete towers, Lat. Am. J. Solid. Struct., 16, 5, e196 (2019)
[63] Wahrhaftig, A. M.; Magalhães, K. M.M.; Brasil, R. M.L. R.F.; Murawski, K., Evaluation of mathematical solutions for the determination of buckling of columns under self-weight, J. Vibrat. Eng. Technol., 1-17 (2020)
[64] Wang, Y.; Xu, Y.; Zhao, Y.; Chen, Y., Limit of axial force ratio and requirement for stirrups of RC columns with special shape, Front. Struct. Civ. Eng., 1, 2, 176-181 (2007)
[65] Wang, X.; Wang, L.; Xia, Y., An efficient global optimization algorithm for maximizing the sum of two generalized Rayleigh quotients, Comput. Appl. Math., 37, 4412-4422 (2018) · Zbl 1402.90187
[66] Xu, B.; Han, Y. S.; Zhao, L.; Xie, Y. M., Topology optimization of continuum structures for natural frequencies considering casting constraints, Eng. Optim., 51, 6, 941-960 (2018)
[67] Young, D., Vibration of rectangular plates by the Ritz method, ASME J. Appl. Mech., 17, 4, 448-453 (1950) · Zbl 0039.20701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.