×

A space-time multiscale method for parabolic problems. (English) Zbl 1493.65158

Summary: We present a space-time multiscale method for a parabolic model problem with an underlying coefficient that may be highly oscillatory with respect to both the spatial and the temporal variables. The method is based on the framework of the variational multiscale method in the context of a space-time formulation and computes a coarse-scale representation of the differential operator that is enriched by auxiliary space-time corrector functions. Once computed, the coarse-scale representation allows us to efficiently obtain well-approximating discrete solutions for multiple right-hand sides. We prove first-order convergence independently of the oscillation scales in the coefficient and illustrate how the space-time correctors decay exponentially in both space and time, making it possible to localize the corresponding computations. This localization allows us to define a practical and computationally efficient method in terms of complexity and memory, for which we provide a posteriori error estimates and present numerical examples.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Abdulle, A., E, W., Engquist, B., and Vanden-Eijnden, E., The heterogeneous multiscale method, Acta Numer., 21 (2012), pp. 1-87. · Zbl 1255.65224
[2] Abdulle, A. and Henning, P., Localized orthogonal decomposition method for the wave equation with a continuum of scales, Math. Comp., 86 (2017), pp. 549-587. · Zbl 1358.65064
[3] Altmann, R., Chung, E., Maier, R., Peterseim, D., and Pun, S.-M., Computational multiscale methods for linear heterogeneous poroelasticity, J. Comput. Math., 38 (2020), pp. 41-57. · Zbl 1463.65284
[4] Altmann, R., Henning, P., and Peterseim, D., Numerical homogenization beyond scale separation, Acta Numer., 30 (2021), pp. 1-86. · Zbl 07674568
[5] Babuška, I., Error-bounds for finite element method, Numer. Math., 16 (1971), pp. 322-333. · Zbl 0214.42001
[6] Babuška, I. and Lipton, R., Optimal local approximation spaces for generalized finite element methods with application to multiscale problems, Multiscale Model. Simul., 9 (2011), pp. 373-406, doi:10.1137/100791051. · Zbl 1229.65195
[7] Babuška, I. and Osborn, J. E., Generalized finite element methods: Their performance and their relation to mixed methods, SIAM J. Numer. Anal., 20 (1983), pp. 510-536, doi:10.1137/0720034. · Zbl 0528.65046
[8] Bernardi, C., Canuto, C., and Maday, Y., Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem, SIAM J. Numer. Anal., 25 (1988), pp. 1237-1271, doi:10.1137/0725070. · Zbl 0666.76055
[9] Brenner, S. C., Two-level additive Schwarz preconditioners for nonconforming finite elements, Contemp. Math., 180 (1994), pp. 9-14. · Zbl 0817.65107
[10] Chung, E. T., Efendiev, Y., Leung, W. T., and Ye, S., Generalized multiscale finite element methods for space-time heterogeneous parabolic equations, Comput. Math. Appl., 76 (2018), pp. 419-437. · Zbl 1419.65056
[11] Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. · Zbl 0383.65058
[12] Dickopf, T., Nodal interpolation between first-order finite element spaces in 1D is uniformly H^1 stable, in Numerical Mathematics and Advanced Applications 2011, Springer, Heidelberg, 2013, pp. 419-427. · Zbl 1267.65179
[13] E, W. and Engquist, B., The heterogeneous multiscale methods, Commun. Math. Sci., 1 (2003), pp. 87-132. · Zbl 1093.35012
[14] Efendiev, Y., Galvis, J., and Hou, T. Y., Generalized multiscale finite element methods (GMsFEM), J. Comput. Phys., 251 (2013), pp. 116-135. · Zbl 1349.65617
[15] Ern, A. and Guermond, J.-L., Finite element quasi-interpolation and best approximation, ESAIM Math. Model. Numer. Anal., 51 (2017), pp. 1367-1385. · Zbl 1378.65041
[16] Geevers, S. and Maier, R., Fast mass lumped multiscale wave propagation modelling, IMA J. Numer. Anal., to appear. · Zbl 07658043
[17] Hackbusch, W., Optimal H^p,p/2 error estimates for a parabolic Galerkin method, SIAM J. Numer. Anal., 18 (1981), pp. 681-692, doi:10.1137/0718045. · Zbl 0483.65063
[18] Henning, P. and Peterseim, D., Oversampling for the multiscale finite element method, Multiscale Model. Simul., 11 (2013), pp. 1149-1175, doi:10.1137/120900332. · Zbl 1297.65155
[19] Hou, T. Y. and Wu, X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134 (1997), pp. 169-189. · Zbl 0880.73065
[20] Hu, J., Leung, W. T., Chung, E. T., Efendiev, Y., and Pun, S.-M., Space-Time Non-local Multi-continua Upscaling for Parabolic Equations with Moving Channelized Media, preprint, https://arxiv.org/abs/2106.12010, 2021.
[21] Hughes, T. J. R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg., 127 (1995), pp. 387-401. · Zbl 0866.76044
[22] Hughes, T. J. R., Feijóo, G. R., Mazzei, L., and Quincy, J.-B., The variational multiscale method—a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166 (1998), pp. 3-24. · Zbl 1017.65525
[23] Hughes, T. J. R. and Stewart, J. R., A space-time formulation for multiscale phenomena, J. Comput. Appl. Math., 74 (1996), pp. 217-229. · Zbl 0869.65061
[24] Knabner, P. and Angermann, L., Numerical Methods for Elliptic and Parabolic Partial Differential Equations, Texts Appl. Math.44, Springer, New York, 2003. · Zbl 1034.65086
[25] Ljung, P., Målqvist, A., and Persson, A., A generalized finite element method for the strongly damped wave equation with rapidly varying data, ESAIM Math. Model. Numer. Anal., 55 (2021), pp. 1375-1403. · Zbl 07523502
[26] Maier, R. and Peterseim, D., Explicit computational wave propagation in micro-heterogeneous media, BIT, 59 (2019), pp. 443-462. · Zbl 1419.65041
[27] Målqvist, A. and Persson, A., A generalized finite element method for linear thermoelasticity, ESAIM Math. Model. Numer. Anal., 51 (2017), pp. 1145-1171. · Zbl 1397.74191
[28] Målqvist, A. and Persson, A., Multiscale techniques for parabolic equations, Numer. Math., 138 (2018), pp. 191-217. · Zbl 1401.65109
[29] Målqvist, A. and Peterseim, D., Localization of elliptic multiscale problems, Math. Comp., 83 (2014), pp. 2583-2603. · Zbl 1301.65123
[30] Målqvist, A. and Peterseim, D., Numerical Homogenization by Localized Orthogonal Decomposition, SIAM Spotlights5, SIAM, Philadelphia, 2020, doi:10.1137/1.9781611976458. · Zbl 1479.65001
[31] Oswald, P., On a BPX-preconditioner for P1 elements, Computing, 51 (1993), pp. 125-133. · Zbl 0787.65018
[32] Owhadi, H., Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games, SIAM Rev., 59 (2017), pp. 99-149, doi:10.1137/15M1013894. · Zbl 1358.65071
[33] Owhadi, H. and Scovel, C., Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization, Cambridge Monogr. Appl. Comput. Math.35, Cambridge University Press, Cambridge, UK, 2019. · Zbl 1477.65004
[34] Owhadi, H. and Zhang, L., Homogenization of parabolic equations with a continuum of space and time scales, SIAM J. Numer. Anal., 46 (2007), pp. 1-36, doi:10.1137/060670420. · Zbl 1170.34037
[35] Owhadi, H., Zhang, L., and Berlyand, L., Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization, ESAIM Math. Model. Numer. Anal., 48 (2014), pp. 517-552. · Zbl 1296.41007
[36] Peterseim, D. and Schedensack, M., Relaxing the CFL condition for the wave equation on adaptive meshes, J. Sci. Comput., 72 (2017), pp. 1196-1213. · Zbl 1378.65169
[37] Schleuß, J. and Smetana, K., Optimal Local Approximation Spaces for Parabolic Problems, preprint, https://arxiv.org/abs/2012.02759, 2020. · Zbl 1487.65157
[38] Steinbach, O., Space-time finite element methods for parabolic problems, Comput. Methods Appl. Math., 15 (2015), pp. 551-566. · Zbl 1329.65229
[39] Urban, K. and Patera, A. T., An improved error bound for reduced basis approximation of linear parabolic problems, Math. Comp., 83 (2014), pp. 1599-1615. · Zbl 1320.65129
[40] Xu, J. and Zikatanov, L., Some observations on Babuška and Brezzi theories, Numer. Math., 94 (2003), pp. 195-202. · Zbl 1028.65115
[41] Zank, M., Inf-Sup Stable Space-Time Methods for Time-Dependent Partial Differential Equations, Verlag der Technischen Universität Graz, Graz, Austria, 2020.
[42] Zhang, F., ed., The Schur Complement and Its Applications, Numer. Methods Algorithms4, Springer, New York, 2005. · Zbl 1075.15002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.