×

Random walk algorithm for the Dirichlet problem for parabolic integro-differential equation. (English) Zbl 1493.65019

Summary: We consider stochastic differential equations driven by a general Lévy processes (SDEs) with infinite activity and the related, via the Feynman-Kac formula, Dirichlet problem for parabolic integro-differential equation (PIDE). We approximate the solution of PIDE using a numerical method for the SDEs. The method is based on three ingredients: (1) we approximate small jumps by a diffusion; (2) we use restricted jump-adaptive time-stepping; and (3) between the jumps we exploit a weak Euler approximation. We prove weak convergence of the considered algorithm and present an in-depth analysis of how its error and computational cost depend on the jump activity level. Results of some numerical experiments, including pricing of barrier basket currency options, are presented.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
35R09 Integro-partial differential equations
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
60G50 Sums of independent random variables; random walks

References:

[1] Allen, LJS, An Introduction to Stochastic Processes with Applications to Biology (2003), Boca Raton: CRC Press, Boca Raton · Zbl 1205.60001
[2] Applebaum, D., Lévy Processes and Stochastic Calculus (2009), Cambridge: Cambridge University Press, Cambridge · Zbl 1200.60001 · doi:10.1017/CBO9780511809781
[3] Asmussen, S.; Rosiński, J., Approximations of small jumps of Lévy processes with a view towards simulation, J. Appl. Probab., 38, 2, 482-493 (2001) · Zbl 0989.60047 · doi:10.1239/jap/996986757
[4] Barndorff-Nielsen, OE; Mikosch, T.; Resnick, SI, Lévy Processes: Theory and Applications (2001), Boston: Birkhäuser, Boston · Zbl 0961.00012
[5] Castagna, A., FX Options and Smile Risk (2010), Hoboken: Wiley, Hoboken
[6] Cont, R.; Tankov, P., Financial Modelling with Jump Processes (2004), Boca Raton: Chapman & Hall/CRC, Boca Raton · Zbl 1052.91043
[7] Devroye, L., Non-uniform Random Variate Generation (1986), New York: Springer, New York · Zbl 0593.65005 · doi:10.1007/978-1-4613-8643-8
[8] Garroni, MG; Menaldi, JL, Green Functions for Second Order Parabolic Integro-differential Problems, Pitman Research Notes in Mathematics Series (1992), Harlow: Longman Scientific & Technical, Harlow · Zbl 0806.45007
[9] Jacob, N., Pseudo Differential Operators and Markov Processes (2005), London: Imperial College Press, London · Zbl 1076.60003 · doi:10.1142/p395
[10] Jacod, J.; Kurtz, TG; Méléard, S.; Protter, P., The approximate Euler method for Lévy driven stochastic differential equations, Annales de l’Institut Henri Poincare (B) Probability and Statistics, 41, 3, 523-558 (2005) · Zbl 1071.60046 · doi:10.1016/j.anihpb.2004.01.007
[11] Kohatsu-Higa, A.; Tankov, P., Jump-adapted discretization schemes for Lévy-driven SDEs, Stoch. Process. Appl., 120, 11, 2258-2285 (2010) · Zbl 1202.60113 · doi:10.1016/j.spa.2010.07.001
[12] Kohatsu-Higa, A.; Ortiz-Latorre, S.; Tankov, P., Optimal simulation schemes for Lévy driven stochastic differential equations, Math. Comp., 83, 289, 2293-2324 (2013) · Zbl 1310.60055 · doi:10.1090/S0025-5718-2013-02786-X
[13] Leimkuhler, B., Sharma, A., Tretyakov, M.V.: Simplest random walk for approximating Robin boundary value problems and ergodic limits of reflected diffusions. arXiv: 2006.15670 (2020)
[14] Liu, XQ; Li, CW, Weak approximation and extrapolations of stochastic differential equations with jumps, SIAM J. Numer. Anal., 37, 6, 1747-1767 (2000) · Zbl 0960.65010 · doi:10.1137/S0036142998344512
[15] Mikulevicius, R.; Platen, E., Time discrete Taylor approximations for Ito processes with jump component, Math. Nachr., 138, 6, 93-104 (1988) · Zbl 0661.60071 · doi:10.1002/mana.19881380107
[16] Mikulevicius, R.; Pragarauskas, H., On Cauchy-Dirichlet problem in half-space for linear integro-differential equations in weighted Hölder spaces, Electron. J. Probab., 10, 1398-1416 (2005) · Zbl 1110.60079 · doi:10.1214/EJP.v10-292
[17] Mikulevicius, R.; Zhang, C., Weak Euler scheme for Levy-driven stochastic differential equations, Theory Probab. Appl., 63, 346-366 (2018) · Zbl 1414.60045 · doi:10.1137/S0040585X97T989039
[18] Milstein, G.; Tretyakov, M., The simplest random walks for the Dirichlet problem, Theory Probab. Appl., 47, 1, 53-68 (2002) · Zbl 1038.60066 · doi:10.1137/S0040585X97979433
[19] Milstein, G.; Tretyakov, M., Stochastic Numerics for Mathematical Physics (2004), Berlin: Springer, Berlin · Zbl 1085.60004 · doi:10.1007/978-3-662-10063-9
[20] Mordecki, E.; Szepessy, A.; Tempone, R.; Zouraris, GE, Adaptive weak approximation of diffusions with jumps, SIAM J. Numer. Anal., 46, 4, 1732-1768 (2008) · Zbl 1169.65302 · doi:10.1137/060669632
[21] Platen, E.; Bruti-Liberati, N., Numerical Solution of Stochastic Differential Equations with Jumps in Finance (2010), Berlin: Springer, Berlin · Zbl 1225.60004 · doi:10.1007/978-3-642-13694-8
[22] Protter, P.; Talay, D., The Euler scheme for Lévy driven stochastic differential equations, Ann. Probab., 25, 1, 393-423 (1997) · Zbl 0876.60030 · doi:10.1214/aop/1024404293
[23] Rubenthaler, S., Numerical simulation of the solution of a stochastic differential equation driven by a Lévy process, Stoch. Process. Appl., 103, 2, 311-349 (2003) · Zbl 1075.60526 · doi:10.1016/S0304-4149(02)00191-6
[24] van Kampen, NG, Stochastic Processes in Physics and Chemistry (2007), Amsterdam: North Holland, Amsterdam · Zbl 0974.60020
[25] Wystup, U., FX Options and Structured Products (2007), Hoboken: Wiley, Hoboken
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.