×

Estimation of tempered stable Lévy models of infinite variation. (English) Zbl 1493.62506

Summary: Truncated realized quadratic variations (TRQV) are among the most widely used high-frequency-based nonparametric methods to estimate the volatility of a process in the presence of jumps. Nevertheless, the truncation level is known to critically affect its performance, especially in the presence of infinite variation jumps. In this paper, we study the optimal truncation level, in the mean-square error sense, for a semiparametric tempered stable Lévy model. We obtain a novel closed-form 2nd-order approximation of the optimal threshold in a high-frequency setting. As an application, we propose a new estimation method, which combines iteratively an approximate semiparametric method of moment estimator and TRQVs with the newly found small-time approximation for the optimal threshold. The method is tested via simulations to estimate the volatility and the Blumenthal-Getoor index of a generalized CGMY model and, via a localization technique, to estimate the integrated volatility of a Heston type model with CGMY jumps. Our method is found to outperform other alternatives proposed in the literature when working with a Lévy process (i.e., the volatility is constant), or when the index of jump intensity \(Y\) is larger than \(3/2\) in the presence of stochastic volatility.

MSC:

62M09 Non-Markovian processes: estimation
60G51 Processes with independent increments; Lévy processes
91G05 Actuarial mathematics

References:

[1] Aït-Sahalia, Y.; Jacod, J., Estimating the Degree of Activity of Jumps in High Frequency Data, Ann Stat, 37, 5, 2202-2244 (2009) · Zbl 1173.62060 · doi:10.1214/08-AOS640
[2] Applebaum D (2004) Lévy Processes and Stochastic Calculus, 2nd Ed.. Cambridge Stud Adv Math, 116, Cambridge University Press, Cambridge, U.K. · Zbl 1073.60002
[3] Belomestny, D., Spectral Estimation of the Fractional Order of a Lévy Process, Ann Stat, 38, 1, 317-351 (2010) · Zbl 1181.62151 · doi:10.1214/09-AOS715
[4] Bull, AD, Near-Optimal Estimation of Jump Activity in Semimartingales, Ann Stat, 44, 1, 58-86 (2016) · Zbl 1334.62179 · doi:10.1214/15-AOS1349
[5] Carr, P.; Geman, H.; Madan, DB; Yor, M., The Fine Structure of Asset Returns: An Empirical Investigation, J Bus, 75, 2, 305-332 (2002) · doi:10.1086/338705
[6] Cont R, Tankov P (2004) Financial Modelling with Jump Processes. Chapman & Hall/CRC Financ Math Ser, Chapman & Hall/CRC, Boca Raton, FL, U.S.A. · Zbl 1052.91043
[7] Figueroa-López, JE, Statistical Estimation of Lévy-Type Stochastic Volatility Models, Ann Finance, 8, 2, 309-335 (2012) · Zbl 1298.62146 · doi:10.1007/s10436-010-0150-x
[8] Figueroa-López, JE; Gong, R.; Houdré, C., High-Order Short-Time Expansions for ATM Option Prices of Exponential Lévy Models, Math Financ, 26, 3, 516-557 (2016) · Zbl 1348.91268 · doi:10.1111/mafi.12064
[9] Figueroa-López, JE; Gong, R.; Houdré, C., Third-Order Short-Time Expansions for Close-to-the-Money Option Prices under the CGMY Model, Appl Math Financ, 24, 6, 547-574 (2017) · Zbl 1398.91586 · doi:10.1080/1350486X.2018.1429935
[10] Figueroa-López, JE; Mancini, C., Optimum Thresholding Using Mean and Conditional Mean Square Error, J Econom, 208, 1, 179-210 (2019) · Zbl 1452.62762 · doi:10.1016/j.jeconom.2018.09.011
[11] Figueroa-López, JE; Ólafsson, S., Short-Time Expansions for Close-to-the-Money Options under a Lévy Jump Model with Stochastic Volatility, Financ Stoch, 20, 1, 219-265 (2016) · Zbl 1369.91179 · doi:10.1007/s00780-015-0281-z
[12] Figueroa-López, JE; Ólafsson, S., Short-Time Asymptotics for the Implied Volatility Skew under a Stochastic Volatility Model with Lévy Jumps, Financ Stoch, 20, 4, 973-1020 (2016) · Zbl 1349.91268 · doi:10.1007/s00780-016-0313-3
[13] Jacod, J.; Todorov, V., Efficient Estimation of Integrated Volatility in Presence of Infinite Variation Jumps, Ann Stat, 42, 3, 1029-1069 (2014) · Zbl 1305.62146
[14] Kawai, R., On Sequential Calibration for an Asset Price Model with Piecewise Lévy Processes, IAENG Int J Appl Math, 40, 4, 239-246 (2010) · Zbl 1229.91311
[15] Kyprianou, A.; Schoutens, W.; Wilmott, P., Exotic Option Pricing and Advanced Lévy Models (2005), ChiChester, England: John Wiley & Sons Ltd., ChiChester, England · Zbl 1140.91050
[16] Masuda H (2019) Parametric estimation of Lévy processes. In Lévy Matters IV, p. 179-286. Springer. Rate-Optimal Estimation of the Blumenthal-Getoor Index of a Lévy Process. Preprint.
[17] Mies F (2019) Rate-Optimal Estimation of the Blumenthal-Getoor Index of a Lévy Process. Preprint. Electron J Stat 14(2):2020 · Zbl 1455.62163
[18] Reiß, M., Testing the Characteristics of a Lévy Process, Stoch Proc Appl, 123, 7, 2808-2828 (2013) · Zbl 1294.62179 · doi:10.1016/j.spa.2013.03.016
[19] Rosiński, J., Tempering Stable Processes, Stoch Proc Appl, 117, 6, 677-707 (2007) · Zbl 1118.60037 · doi:10.1016/j.spa.2006.10.003
[20] Sato K (1999) Lévy Processes and Infinitely Divisible Distributions. Cambridge Stud. Adv. Math., 68, Cambridge University Press, Cambridge, U.K. · Zbl 0973.60001
[21] Wang, Q.; Figueroa-López, JE; Kuffner, T., Bayesian Inference on Volatility in the Presence of Infinite Jump Activity and Microstructure Noise, Elect J Stats, 15, 1, 506-553 (2021) · Zbl 1459.62203
[22] Zhang, L.; Mykland, PA; Aït-Sahalia, Y., A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High-Frequency Data, J Am Stat Assoc, 100, 472, 1394-1411 (2005) · Zbl 1117.62461 · doi:10.1198/016214505000000169
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.