×

Non-central moderate deviations for compound fractional Poisson processes. (English) Zbl 1493.60052

Moderate deviations often mean a class of deviation principles that fills the gap between a convergence in probablity to zero governed by a large deviation principle and a weak convergence to a centered Gaussian distribution. When the centered Gaussian distribution is replaced by a non-Gaussian distribution, the authors call the corresponding deviation principle non-central moderate deviations. In this paper, the authors study non-central moderate deviations for compound fractional Poisson processes with light-tailed jumps.

MSC:

60F10 Large deviations
60F05 Central limit and other weak theorems
60G22 Fractional processes, including fractional Brownian motion
33E12 Mittag-Leffler functions and generalizations

References:

[1] Beghin, L.; Macci, C., Large deviations for fractional Poisson processes, Statist. Probab. Lett., 83, 1193-1202 (2013) · Zbl 1266.60046
[2] Beghin, L.; Orsingher, E., Fractional Poisson processes and related planar random motions, Electron. J. Probab., 14, 1790-1827 (2009) · Zbl 1190.60028
[3] Beghin, L.; Orsingher, E., Poisson-type processes governed by fractional and higher-order recursive differential equations, Electron. J. Probab., 15, 684-709 (2010) · Zbl 1228.60093
[4] Dembo, A.; Zeitouni, O., Large Deviations Techniques and Applications (1998), Springer-Verlag: Springer-Verlag New York · Zbl 0896.60013
[5] Duffy, K. R.; Torrisi, G. L., Sample path large deviations of Poisson shot noise with heavy-tailed semiexponential distributions, J. Appl. Probab., 48, 688-698 (2011) · Zbl 1230.60025
[6] Gantert, N., Functional erdös-renyi laws for semiexponential random variables, Ann. Probab., 26, 1356-1369 (1998) · Zbl 0945.60026
[7] Giuliano, R.; Macci, C., Some examples of non-central moderate deviations for sequences of real random variables (2021), Available on https://arxiv.org/abs/2110.05859
[8] Glynn, P. W.; Whitt, W., Large deviations behavior of counting processes and their inverses, Queueing Syst. Theory Appl., 17, 107-128 (1994) · Zbl 0805.60023
[9] Gorenflo, R.; Kilbas, A. A.; Mainardi, F.; Rogosin, S. V., Mittag-Leffler functions, (Related Topics and Applications (2014), Springer: Springer New York) · Zbl 1309.33001
[10] Leonenko, N.; Macci, C.; Pacchiarotti, B., Large deviations for a class of tempered subordinators and their inverse processes, Proc. Roy. Soc. Edinburgh Sect. A, 151, 2030-2050 (2021) · Zbl 1479.60061
[11] Leonenko, N. N.; Meerschaert, M. M.; Schilling, R. L.; Sikorskii, A., Correlation structure of time-changed Lévy processes, Commun. Appl. Ind. Math., 6, 1, Article e-483 (2014), 22 · Zbl 1329.60118
[12] Meerschaert, M. M.; Benson, D. A.; Scheffler, H. P.; Baeumer, B., Stochastic solution of space-time fractional diffusion equations, Phys. Rev. E, (3) 65, 4, Article 041103 pp. (2002), 4 · Zbl 1244.60080
[13] Meerschaert, M. M.; Nane, E.; Vellaisamy, P., The fractional Poisson process and the inverse stable subordinator, Electron. J. Probab., 16, 1600-1620 (2011) · Zbl 1245.60084
[14] Meerschaert, M. M.; Scheffler, H. P., Limit theorems for continuous-time random walks with infinite mean waiting times, J. Appl. Probab., 41, 623-638 (2004) · Zbl 1065.60042
[15] Oliveira, G.; Barreto-Souza, W.; Silva, R. W.C., Fractional Poisson random sum and its associated normal variance mixture, (To Appear in Stoch. Models (2021)), Available at https://www.tandfonline.com/doi/full/10.1080/15326349.2021.1954533 or at https://arxiv.org/pdf/2103.08691.pdf
[16] Orsingher, E.; Polito, F., The space-fractional Poisson process, Statist. Probab. Lett., 82, 2012, 852-858 (2012) · Zbl 1270.60048
[17] Stabile, G.; Torrisi, G. L., Large deviations of Poisson shot noise processes under heavy tail semi-exponential conditions, Statist. Probab. Lett., 80, 1200-1209 (2010) · Zbl 1196.60041
[18] Vellaisamy, P.; Maheshwari, A., Fractional negative binomial and Pólya processes, Probab. Math. Statist., 38, 77-101 (2018) · Zbl 1410.60043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.