×

Benjamini-Schramm convergence and spectra of random hyperbolic surfaces of high genus. (English) Zbl 1493.58015

Summary: We study geometric and spectral properties of typical hyperbolic surfaces of high genus, excluding a set of small measure for the Weil-Petersson probability measure. We first prove Benjamini-Schramm convergence to the hyperbolic plane \(\mathcal{H}\) as the genus \(g\) goes to infinity. An estimate for the number of eigenvalues in an interval \([a,b]\) in terms of \(a,b\) and \(g\) is then proved using the Selberg trace formula. It implies the convergence of spectral measures to the spectral measure of \(\mathcal{H}\) as \(g\rightarrow+\infty\) and a uniform Weyl law as \(b\rightarrow +\infty\). We deduce a bound on the number of small eigenvalues and the multiplicity of any eigenvalue.

MSC:

58J50 Spectral problems; spectral geometry; scattering theory on manifolds
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
58J65 Diffusion processes and stochastic analysis on manifolds

References:

[1] 10.1016/j.crma.2011.07.013 · Zbl 1223.53039 · doi:10.1016/j.crma.2011.07.013
[2] 10.4007/annals.2017.185.3.1 · Zbl 1379.22006 · doi:10.4007/annals.2017.185.3.1
[3] 10.1007/BF02579166 · Zbl 0661.05053 · doi:10.1007/BF02579166
[4] 10.1007/s00220-017-2879-9 · Zbl 1368.58015 · doi:10.1007/s00220-017-2879-9
[5] 10.1214/EJP.v6-96 · Zbl 1010.82021 · doi:10.1214/EJP.v6-96
[6] 10.1007/BF02028444 · Zbl 0341.35052 · doi:10.1007/BF02028444
[7] ; Besson, Gérard, Sur la multiplicité de la première valeur propre des surfaces riemanniennes, Ann. Inst. Fourier (Grenoble), 30, 1, 109 (1980) · Zbl 0417.30033
[8] 10.1215/00127094-2871415 · Zbl 1312.57041 · doi:10.1215/00127094-2871415
[9] ; Brooks, Robert; Makover, Eran, Random construction of Riemann surfaces, J. Differential Geom., 68, 1, 121 (2004) · Zbl 1095.30037
[10] 10.1007/BF02567355 · Zbl 0348.53027 · doi:10.1007/BF02567355
[11] 10.24033/asens.1426 · Zbl 0501.53030 · doi:10.24033/asens.1426
[12] ; Buser, Peter, Geometry and spectra of compact Riemann surfaces. Progr. Math., 106 (1992) · Zbl 0770.53001
[13] 10.1515/9781400869312-013 · Zbl 1006.53034 · doi:10.1515/9781400869312-013
[14] ; Erdős, P.; Rényi, A., On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl., 5, 1-2, 17 (1960) · Zbl 0103.16301
[15] 10.1090/memo/0910 · Zbl 1177.05070 · doi:10.1090/memo/0910
[16] 10.1007/s00039-021-00556-6 · Zbl 1478.58010 · doi:10.1007/s00039-021-00556-6
[17] ; Katok, Svetlana, Fuchsian groups (1992) · Zbl 0753.30001
[18] 10.1215/00127094-2017-0027 · Zbl 1384.37035 · doi:10.1215/00127094-2017-0027
[19] ; Mirzakhani, Maryam, Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus, J. Differential Geom., 94, 2, 267 (2013) · Zbl 1270.30014
[20] 10.1215/00127094-2009-048 · Zbl 1179.30041 · doi:10.1215/00127094-2009-048
[21] 10.1090/S0002-9904-1974-13609-8 · Zbl 0317.30017 · doi:10.1090/S0002-9904-1974-13609-8
[22] 10.2307/1997781 · Zbl 0381.30022 · doi:10.2307/1997781
[23] ; Selberg, A., Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.), 20, 1-3, 47 (1956) · Zbl 0072.08201
[24] 10.1090/bull/1687 · Zbl 1452.32003 · doi:10.1090/bull/1687
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.