×

An approximating approach to an optimal control problem for an elliptic variational inequality on a mixed boundary. (English) Zbl 1493.49010

Summary: In this article, an optimal control problem (OCP) for a system governed by a class of double obstacle elliptic variational inequalities on a mixed boundary is proposed. An approximating optimal control problem \((\mathrm{OCP})_\varepsilon\) is then defined to approximate the original problem (OCP) by a penalty method. Under some assumptions, the existence result for the problem \((\mathrm{OCP})_\varepsilon\) is proved. The sequence of solutions to the problem \((\mathrm{OCP})_\varepsilon\) converges to a solution of the original problem (OCP) as the penalty parameter tends to zero. Next, the necessary optimality conditions are obtained for the solution of the problem \((\mathrm{OCP})_\varepsilon\) with a given concrete penalty function. At last, an algorithm is used to solve a given concrete optimal control problem. Numerical experimental results are presented to show that the approximation method is effective and practical.

MSC:

49J40 Variational inequalities
49K20 Optimality conditions for problems involving partial differential equations
49J20 Existence theories for optimal control problems involving partial differential equations
Full Text: DOI

References:

[1] Bergouniou, M.; Lenhart, S., Optimal control of the obstacle in semilinear variational inequalities, Positivity., 8, 3, 229-242 (2004) · Zbl 1057.49008 · doi:10.1007/s11117-004-5009-9
[2] Bergounioux, M.; Lenhart, S., Optimal control of bilateral obstacle problems, SIAM J. Control Optim, 43, 1, 240-255 (2004) · Zbl 1079.49023 · doi:10.1137/S0363012902416912
[3] Chen, Q. H.; Chu, D. C.; Tan, R. C. E.; Ye, Y. Q., Double obstacle control problem for a quasilinear elliptic variational inequality with source term, Nonlinear Anal. Real World Appl, 18, 108-120 (2014) · Zbl 1293.49015 · doi:10.1016/j.nonrwa.2014.01.007
[4] Carl, S.; Le, V. K.; Motreanu, D., Springer Monographs in Mathematics, Nonsmooth variational problems and their inequalities. Comparison principles and applications (2007), New York: Springer, New York · Zbl 1109.35004
[5] Díaz, J. I.; Podolskiy, A. V.; Shaposhnikova, T. A., On the convergence of controls and cost functionals in some optimal control heterogeneous problems when the homogenization process gives rise to some strange terms, J. Math. Anal. Appl, 506, 1, 13 (2022) · Zbl 1479.35251
[6] Duan, Y. R.; Wang, S.; Zhou, Y. Y., A power penalty approach to a mixed quasilinear elliptic complementarity problem, J. Glob. Optim, 81, 4, 901-918 (2021) · Zbl 1490.90287 · doi:10.1007/s10898-021-01000-7
[7] Eide, J. D.; Hager, W. W.; Rao, A. V., Modified Legendre-Gauss-Radau collocation method for optimal control problems with nonsmooth solutions, J. Optim. Theory Appl, 191, 2-3, 600-633 (2021) · Zbl 1481.49018 · doi:10.1007/s10957-021-01810-5
[8] Gariboldi, C. M.; Tarzia, D. A., Distributed optimal control problems for a class of elliptic hemivariational inequalities with a parameter and its asymptotic behavior, Commun. Nonlinear Sci. Numer. Simul, 104, 9 (2022) · Zbl 1480.35252
[9] Ito, K.; Kunisch, K., Optimal control of elliptic variational inequalities, Appl. Math. Optim, 41, 3, 343-364 (2000) · Zbl 0960.49003 · doi:10.1007/s002459911017
[10] Kinderlehrer, D.; Stampacchia, G., Pure and Applied Mathematics, 88, An introduction to variational inequalities and their applications (1980), New York-London: Academic Press, Inc, New York-London · Zbl 0457.35001
[11] Li, X. J.; Yong, J. M., Systems and Control: Foundations and Applications, Optimal control theory for infinite-dimensional systems (1995), Boston, MA: Birkhäuser Boston, Inc, Boston, MA
[12] Long, F. Z.; Zeng, B., The zero duality gap property for an optimal control problem governed by a multivalued hemivariational inequality, Appl. Math. Optim, 84, 3, 2629-2643 (2021) · Zbl 1484.49016 · doi:10.1007/s00245-020-09721-z
[13] Mignot, F.; Puel, J. P., Optimal control in some variational inequalities, SIAM J. Control Optim, 22, 3, 466-476 (1984) · Zbl 0561.49007 · doi:10.1137/0322028
[14] Rodrigues, J. F., North-Holland Mathematics Studies, 134. Notas de Matemtica, 114, Obstacle problems in mathematical physics (1987), Amsterdam: North-Holland Publishing Co, Amsterdam · Zbl 0606.73017
[15] Sethi, S. P.; Thompson, G. L., International Series in Management Science/Operations Research, Optimal control theory. Applications to management science (1981), Boston: Kluwer Nijhoff Publishing, Boston · Zbl 0495.49001
[16] Schiela, A.; Wachsmuth, D., Convergence analysis of smoothing methods for optimal control of stationary variational inequalities with control constraints, Esaim: M2an, 47, 3, 771-787 (2013) · Zbl 1266.65112 · doi:10.1051/m2an/2012049
[17] Wang, C. F.; Wu, P. C.; Zhou, Y. Y., An optimal control problem governed by a Kirchhoff-type variational inequality, J. Appl. Math, 2020, 1-8 (2020) · Zbl 1442.49015 · doi:10.1155/2020/2831242
[18] Wang, Z. B.; Chen, Z. L.; Chen, Z. Y.; Yao, S. S., Lagrangian methods for optimal control problems governed by a mixed quasi-variational inequality, Optim. Lett, 12, 6, 1357-1371 (2018) · Zbl 1396.90090 · doi:10.1007/s11590-017-1179-9
[19] Ye, Y. Q.; Chen, Q., Optimal control of the obstacle in a quasilinear elliptic variational inequality, J. Math. Anal. Appl, 294, 1, 258-272 (2004) · Zbl 1044.49008 · doi:10.1016/j.jmaa.2004.02.035
[20] Ye, Y. Q.; Chan, C. K.; Leung, B. P. K., Some optimality conditions of quasilinear elliptic obstacle optimal control problems, Appl. Math. Comput, 188, 2, 1757-1771 (2007) · Zbl 1130.49010 · doi:10.1016/j.amc.2006.11.038
[21] Zeidler, E., Nonlinear Functional Analysis and Its Applications II/B: Nonlinear Monotone Operators (1985), New York: Springer-Verlag, New York · Zbl 0583.47051
[22] Zhou, Y. Y.; Wang, S.; Yang, X. Q., A penalty approximation method for a semilinear parabolic double obstacle problem, J. Glob. Optim, 60, 3, 531-550 (2014) · Zbl 1304.49025 · doi:10.1007/s10898-013-0122-6
[23] Zhou, Y. Y.; Yang, X. Q.; Teo, K. L., Optimal control problems governed by a variational inequality via nonlinear Lagrangian methods, Optimization, 55, 1-2, 187-203 (2006) · Zbl 1091.49004 · doi:10.1080/02331930500530807
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.