×

Rate of the enhanced dissipation for the two-jet Kolmogorov type flow on the unit sphere. (English) Zbl 1493.35069

Summary: We study the enhanced dissipation for the two-jet Kolmogorov type flow which is a stationary solution to the Navier-Stokes equations on the two-dimensional unit sphere given by the zonal spherical harmonic function of degree two. Based on the pseudospectral bound method developed by S. Ibrahim et al. [Ann. PDE 5, No. 2, Paper No. 14, 84 p. (2019; Zbl 1439.35370)] and a modified version of the Gearhart-Prüss type theorem shown by D. Wei [Sci. China, Math. 64, No. 3, 507–518 (2021; Zbl 1464.35260)], we derive an estimate for the resolvent of the linearized operator along the imaginary axis and show that a solution to the linearized equation rapidly decays at the rate \(O(e^{-c\sqrt{\nu}\,t})\) when the viscosity coefficient \(\nu\) is sufficiently small as in the case of the plane Kolmogorov flow.

MSC:

35Q30 Navier-Stokes equations
35R01 PDEs on manifolds
47A10 Spectrum, resolvent
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

DLMF

References:

[1] Aris, R.: Vectors, tensors and the basic equations of fluid mechanics. Mineola, NY: Dover Publications, reprint of the 1962 original edition, (1989) · Zbl 1158.76300
[2] Aubin, T., Some nonlinear problems in Riemannian geometry (1998), Berlin: Springer, Berlin · Zbl 0896.53003 · doi:10.1007/978-3-662-13006-3
[3] Beck, M.; Wayne, CE, Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A, 143, 5, 905-927 (2013) · Zbl 1296.35114 · doi:10.1017/S0308210511001478
[4] Cao, C.; Rammaha, MA; Titi, ES, The Navier-Stokes equations on the rotating \(2\)-D sphere: Gevrey regularity and asymptotic degrees of freedom, Z. Angew. Math. Phys., 50, 3, 341-360 (1999) · Zbl 0928.35120 · doi:10.1007/PL00001493
[5] Chan, CH; Czubak, M., Non-uniqueness of the Leray-Hopf solutions in the hyperbolic setting, Dyn. Partial Differ. Equ., 10, 1, 43-77 (2013) · Zbl 1307.35189 · doi:10.4310/DPDE.2013.v10.n1.a3
[6] Chan, CH; Yoneda, T., On the stationary Navier-Stokes flow with isotropic streamlines in all latitudes on a sphere or a 2D hyperbolic space, Dyn. Partial Differ. Equ., 10, 3, 209-254 (2013) · Zbl 1320.76030 · doi:10.4310/DPDE.2013.v10.n3.a1
[7] Chan, CH; Czubak, M.; Disconzi, MM, The formulation of the Navier-Stokes equations on Riemannian manifolds, J. Geom. Phys., 121, 335-346 (2017) · Zbl 1376.58009 · doi:10.1016/j.geomphys.2017.07.015
[8] Constantin, P.; Kiselev, A.; Ryzhik, L.; Zlatoš, A., Diffusion and mixing in fluid flow, Ann. of Math. (2), 168, 2, 643-674 (2008) · Zbl 1180.35084 · doi:10.4007/annals.2008.168.643
[9] Dindoš, M.; Mitrea, M., The stationary Navier-Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and \(C^1\) domains, Arch. Ration. Mech. Anal., 174, 1, 1-47 (2004) · Zbl 1059.76014 · doi:10.1007/s00205-004-0320-y
[10] Duduchava, LR; Mitrea, D.; Mitrea, M., Differential operators and boundary value problems on hypersurfaces, Math. Nachr., 279, 9-10, 996-1023 (2006) · Zbl 1112.58020 · doi:10.1002/mana.200410407
[11] Ebin, DG; Marsden, J., Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 2, 92, 102-163 (1970) · Zbl 0211.57401 · doi:10.2307/1970699
[12] Engel, K.-J., Nagel, R.: One-parameter semigroups for linear evolution equations, volume 194 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt · Zbl 0952.47036
[13] Gallagher, I.; Gallay, T.; Nier, F., Spectral asymptotics for large skew-symmetric perturbations of the harmonic oscillator, Int. Math. Res. Not. IMRN, 12, 2147-2199 (2009) · Zbl 1180.35383
[14] Ibrahim, S., Maekawa, Y., Masmoudi, N.: On pseudospectral bound for non-selfadjoint operators and its application to stability of Kolmogorov flows. Ann. PDE, 5(2):Paper No. 14, 84, (2019) · Zbl 1439.35370
[15] Il’in, AA, Navier-Stokes and Euler equations on two-dimensional closed manifolds, Mat. Sb., 181, 4, 521-539 (1990) · Zbl 0713.35074
[16] Il’n, AA; Filatov, AN, Unique solvability of the Navier-Stokes equations on a two-dimensional sphere, Dokl. Akad. Nauk SSSR, 301, 1, 18-22 (1988)
[17] Ilyin, AA, Stability and instability of generalized Kolmogorov flows on the two-dimensional sphere, Adv. Differ. Equ., 9, 9-10, 979-1008 (2004) · Zbl 1099.37059
[18] Iudovich, VI, Example of the generation of a secondary stationary or periodic flow when there is loss of stability of the laminar flow of a viscous incompressible fluid, J. Appl. Math. Mech., 29, 3, 527-544 (1965) · Zbl 0148.22307 · doi:10.1016/0021-8928(65)90062-6
[19] Kato, T.: Perturbation theory for linear operators. Springer-Verlag, Berlin-New York, second edition, (1976). Grundlehren der Mathematischen Wissenschaften, Band 132 · Zbl 0342.47009
[20] Khesin, B.; Misiołek, G., Euler and Navier-Stokes equations on the hyperbolic plane, Proc. Natl. Acad. Sci. USA, 109, 45, 18324-18326 (2012) · doi:10.1073/pnas.1210350109
[21] Kohr, M.; Wendland, WL, Variational approach for the Stokes and Navier-Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds, Calc. Var. Partial Differ. Equ., 57, 6, 41 (2018) · Zbl 1404.35150 · doi:10.1007/s00526-018-1426-7
[22] Lebedev, N.N.: Special functions and their applications. Dover Publications Inc, New York, Revised edition, translated from the Russian and edited by Richard A. Unabridged and corrected republication, Silverman (1972) · Zbl 0271.33001
[23] Lee, JM, Introduction to smooth manifolds (2013), New York: Springer, New York · Zbl 1258.53002
[24] Lee, JM, Introduction to Riemannian manifolds (2018), Cham: Springer, Cham · Zbl 1409.53001 · doi:10.1007/978-3-319-91755-9
[25] Li, T.; Wei, D.; Zhang, Z., Pseudospectral bound and transition threshold for the \(3\) D Kolmogorov flow, Comm. Pure Appl. Math., 73, 465-557 (2020) · Zbl 1442.35346 · doi:10.1002/cpa.21863
[26] Lichtenfelz, LA, Nonuniqueness of solutions of the Navier-Stokes equations on Riemannian manifolds, Ann. Global Anal. Geom., 50, 3, 237-248 (2016) · Zbl 1358.35095 · doi:10.1007/s10455-016-9509-1
[27] Lin, Z.; Xu, M., Metastability of Kolmogorov flows and inviscid damping of shear flows, Arch. Ration. Mech. Anal., 231, 3, 1811-1852 (2019) · Zbl 1426.76155 · doi:10.1007/s00205-018-1311-8
[28] Marchioro, C., An example of absence of turbulence for any Reynolds number, Comm. Math. Phys., 105, 1, 99-106 (1986) · Zbl 0607.76052 · doi:10.1007/BF01212343
[29] Matsuda, M.; Miyatake, S., Bifurcation analysis of Kolmogorov flows, Tohoku Math. J. (2), 54, 3, 329-365 (2002) · Zbl 1021.35080 · doi:10.2748/tmj/1113247600
[30] Mešalkin, LD; Sinaĭ, JG, Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid, J. Appl. Math. Mech., 25, 1700-1705 (1961) · Zbl 0108.39501 · doi:10.1016/0021-8928(62)90149-1
[31] Mitrea, M.; Taylor, M., Navier-Stokes equations on Lipschitz domains in Riemannian manifolds, Math. Ann., 321, 4, 955-987 (2001) · Zbl 1039.35079 · doi:10.1007/s002080100261
[32] Miura, T.-H.: Linear stability and enhanced dissipation for the two-jet kolmogorov type flow on the unit sphere. J. Funct. Anal. to appear · Zbl 1496.35282
[33] Nagasawa, T., Construction of weak solutions of the Navier-Stokes equations on Riemannian manifold by minimizing variational functionals, Adv. Math. Sci. Appl., 9, 1, 51-71 (1999) · Zbl 0944.58021
[34] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.1 of 2021-03-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds
[35] Okamoto, H.; Shōji, M., Bifurcation diagrams in Kolmogorov’s problem of viscous incompressible fluid on \(2\)-D flat tori, Japan J. Indust. Appl. Math., 10, 2, 191-218 (1993) · Zbl 0783.76040 · doi:10.1007/BF03167572
[36] Pierfelice, V., The incompressible Navier-Stokes equations on non-compact manifolds, J. Geom. Anal., 27, 1, 577-617 (2017) · Zbl 1480.35312 · doi:10.1007/s12220-016-9691-1
[37] Priebe, V., Solvability of the Navier-Stokes equations on manifolds with boundary, Manuscripta Math., 83, 2, 145-159 (1994) · Zbl 0803.35108 · doi:10.1007/BF02567605
[38] Prüss, J.; Simonett, G.; Wilke, M., On the Navier-Stokes equations on surfaces, J. Evol. Equ., 21, 3, 3153-3179 (2021) · Zbl 1486.35348 · doi:10.1007/s00028-020-00648-0
[39] Samavaki, M.; Tuomela, J., Navier-Stokes equations on Riemannian manifolds, J. Geom. Phys., 148 (2020) · Zbl 1434.53082 · doi:10.1016/j.geomphys.2019.103543
[40] Sasaki, E.; Takehiro, S.; Yamada, M., Linear stability of viscous zonal jet flows on a rotating sphere, J. Phys. Soc. Japan, 82, 9 (2013) · doi:10.7566/JPSJ.82.094402
[41] Sasaki, E.; Takehiro, S.; Yamada, M., Bifurcation structure of two-dimensional viscous zonal flows on a rotating sphere, J. Fluid Mech., 774, 224-244 (2015) · Zbl 1331.76125 · doi:10.1017/jfm.2015.262
[42] Skiba, YN, Mathematical problems of the dynamics of incompressible fluid on a rotating sphere (2017), Cham: Springer, Cham · Zbl 1391.76003 · doi:10.1007/978-3-319-65412-6
[43] Taylor, ME, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differ. Equ., 17, 9-10, 1407-1456 (1992) · Zbl 0771.35047 · doi:10.1080/03605309208820892
[44] Taylor, ME, Partial differential equations III. Nonlinear equations (2011), New York: Springer, New York · Zbl 1206.35004 · doi:10.1007/978-1-4419-7049-7
[45] Taylor, M., Euler equation on a rotating surface, J. Funct. Anal., 270, 10, 3884-3945 (2016) · Zbl 1346.35155 · doi:10.1016/j.jfa.2016.02.023
[46] Temam, R.; Wang, SH, Inertial forms of Navier-Stokes equations on the sphere, J. Funct. Anal., 117, 1, 215-242 (1993) · Zbl 0801.35109 · doi:10.1006/jfan.1993.1126
[47] Teschl, G.: Mathematical methods in quantum mechanics, volume 157 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, (2014). With applications to Schrödinger operators · Zbl 1342.81003
[48] Varshalovich, D. A., Moskalev, A. N., Khersonskiĭ, V. K.: Quantum theory of angular momentum. World Scientific Publishing Co., Inc., Teaneck, NJ, (1988). Irreducible tensors, spherical harmonics, vector coupling coefficients, \(3nj\) symbols, Translated from the Russian
[49] Villani, C.: Hypocoercivity. Mem. Amer. Math. Soc., 202(950):iv+141, (2009) · Zbl 1197.35004
[50] Wei, D., Diffusion and mixing in fluid flow via the resolvent estimate, Sci. China Math., 64, 3, 507-518 (2021) · Zbl 1464.35260 · doi:10.1007/s11425-018-9461-8
[51] Wei, D.; Zhang, Z., Enhanced dissipation for the Kolmogorov flow via the hypocoercivity method, Sci. China Math., 62, 6, 1219-1232 (2019) · Zbl 1420.35266 · doi:10.1007/s11425-018-9508-5
[52] Wei, D.; Zhang, Z.; Zhao, W., Linear inviscid damping and enhanced dissipation for the Kolmogorov flow, Adv. Math., 362 (2020) · Zbl 1437.76010 · doi:10.1016/j.aim.2019.106963
[53] Wirosoetisno, D., Navier-Stokes equations on a rapidly rotating sphere, Discrete Contin. Dyn. Syst. Ser. B, 20, 4, 1251-1259 (2015) · Zbl 1308.35038 · doi:10.3934/dcdsb.2015.20.1251
[54] Zlatoš, A., Diffusion in fluid flow: dissipation enhancement by flows in 2D, Comm. Partial Differ. Equ., 35, 3, 496-534 (2010) · Zbl 1201.35106 · doi:10.1080/03605300903362546
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.