×

On the Leray problem and the Poiseuille flow. (English) Zbl 1493.35064

Let \(\Omega\) denote a smooth open domain in \(\mathbb R^n\). The author considers the classic boundary value problem for the stationary nonhomogeneous Navier-Stokes equations in a weak statement. Existence and uniqueness are studied by application of the Lax-Milgram and the Schauder fixed point theorems. Uniqueness is proved for sufficiently large viscosity. The special attention is paid to the Poiseuille flow when \(\Omega = \mathbb R \times \omega\), where \(\omega\) is a bounded domain in \(\mathbb R^{n-1}\).

MSC:

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
35J60 Nonlinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
Full Text: DOI

References:

[1] C.J. Amick, Existence of solutions to the nonhomogeneous steady Navier-Stokes equations, Indiana Univ. Math. J. 33 (1984), 817-830. doi:10.1512/iumj.1984.33.33043. · Zbl 0563.35059 · doi:10.1512/iumj.1984.33.33043
[2] M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser, Basel, 2009, Birkhäuser Advanced Texts. · Zbl 1171.35003
[3] M. Chipot, Asymptotic Issues for Some Partial Differential Equations, Imperial College Press, 2016. · Zbl 1356.35001
[4] M. Chipot and S. Mardare, Asymptotic behaviour of the Stokes problem in cylinders becoming unbounded in one direc-tion, J. Math. Pures Appl. 90(2) (2008), 133-159. doi:10.1016/j.matpur.2008.04.002. · Zbl 1154.35316 · doi:10.1016/j.matpur.2008.04.002
[5] R. Dautray and J.-L. Lions, in: Analyse Mathématique et Calcul Numérique Pour les Sciences et les Techniques. Tome 1, Masson, Paris, 1984.
[6] L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, 1998. · Zbl 0902.35002
[7] H. Fujita, On stationary solutions to Navier-Stokes equation in symmetric plane domain under general outflow condi-tion, in: Proceedings of International Conference on Navier-Stokes Equations. Theory and Numerical Methods, Pitman Research Notes in Mathematics, Vol. 388, Varenna, Italy, 1997, pp. 16-30. · Zbl 0946.35063
[8] H. Fujita and H. Morimoto, A remark on the existence of the Navier-Stokes flow with non-vanishing outflow condition, GAKUTO Internat. Ser. Math. Sci. Appl. 10 (1997), 53-61. · Zbl 0887.35118
[9] G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, 2nd edn, Springer, 2011. · Zbl 1245.35002
[10] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer, Berlin, Heidelberg, New-York, 2001, Reprint of the 1998 edition. · Zbl 1042.35002
[11] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Classic Appl. Math., Vol. 31, SIAM, Philadelphia, 2000. · Zbl 0988.49003
[12] M.V. Korobkov, K. Pileckas and R. Russo, On the flux problem in the theory of steady Navier-Stokes equations with nonhomogeneous boundary conditions, Arch. Ration. Mech. Anal. 207(1) (2013), 185-213. doi:10.1007/s00205-012-0563-y. · Zbl 1260.35115 · doi:10.1007/s00205-012-0563-y
[13] M.V. Korobkov, K. Pileckas and R. Russo, Solution of Leray’s problem for stationary Navier-Stokes equations in plane and axially symmetric spatial domains, Ann. of Math. (2) 181(2) (2015), 769-807. doi:10.4007/annals.2015.181.2.7. · Zbl 1318.35065 · doi:10.4007/annals.2015.181.2.7
[14] H. Kozono and T. Yanagisawa, Leray’s problem on the stationary Navier-Stokes equations with inhomogeneous boundary data, Math. Z. 262(1) (2009), 27-39. doi:10.1007/s00209-008-0361-2. · Zbl 1169.35045 · doi:10.1007/s00209-008-0361-2
[15] O.A. Ladyzhenskaya, New equations for the description of motion of viscous incompressible fluids and solvability in the large of boundary value problems for them, Proc. Steklov Inst. Math. 102 (1967), 95-118.
[16] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, 1969. · Zbl 0184.52603
[17] J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique, J. Math. Pures Appl. 12 (1933), 1-82. · Zbl 0006.16702
[18] J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969. · Zbl 0189.40603
[19] H. Morimoto, Stationary Navier-Stokes flow in 2-D channels involving the general outflow condition, in: Handbook of Differential Equations: Stationary Partial Differential Equations 4, Ch. 5, Elsevier, 2007, pp. 299-353. doi:10.1016/ S1874-5733(07)80008-8. · Zbl 1223.35251 · doi:10.1016/S1874-5733(07)80008-8
[20] H. Morimoto, A remark on the existence of 2-D steady Navier-Stokes flow in bounded symmetric domain under general outflow condition, J. Math. Fluid Mech. 9(3) (2007), 411-418. doi:10.1007/s00021-005-0206-2. · Zbl 1147.35072 · doi:10.1007/s00021-005-0206-2
[21] R. Temam, Navier-Stokes Equations, North Holland, Amsterdam, 1979. · Zbl 0454.35073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.