×

Gradient estimates in anisotropic Lorentz spaces to general elliptic equations of \(p\)-growth. (English) Zbl 1493.35016

In the framework of the refined anisotropic Lorentz spaces the authors obtain useful global mixed norm gradient estimate for solutions of elliptic equations of \(p\)-growth having noncontinuous coefficients.
Is pointed out that Lorentz spaces, for some specific values of the exponents, are Lebesgue spaces so the study could be considered inserted in this context.
A key assumption for the highest order coefficients of the elliptic equations taken into consideration is that the boundary of the domain where are defined is locally presented as the graph of a Lipschitz continuous function with small Lipschitz constant.
The proof is based on an a priori pointwise estimate of the sharp functions for the spatial derivatives of weak solution, and a key ingredient is how to extend the Fefferman-Stein theorem of sharp functions to a new version with mixed-norm in the anisotropic Lorentz spaces.
In addition, the authors pointed out the use of the bootstrapping argument regarding the spatial dimension.

MSC:

35B45 A priori estimates in context of PDEs
35D30 Weak solutions to PDEs
35J25 Boundary value problems for second-order elliptic equations
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

References:

[1] P. Baroni, “Lorentz estimates for degenerate and singular evolutionary systems”, J. Differential Equations 255:9 (2013), 2927-2951. · Zbl 1286.35051 · doi:10.1016/j.jde.2013.07.024
[2] A. Benedek and R. Panzone, “The space \[L^p\], with mixed norm”, Duke Math. J. 28 (1961), 301-324. · Zbl 0107.08902
[3] A. P. Blozinski, “Multivariate rearrangements and Banach function spaces with mixed norms”, Trans. Amer. Math. Soc. 263:1 (1981), 149-167. · Zbl 0462.46020 · doi:10.2307/1998649
[4] S.-S. Byun, L. Wang, and S. Zhou, “Nonlinear elliptic equations with BMO coefficients in Reifenberg domains”, J. Funct. Anal. 250:1 (2007), 167-196. · Zbl 1173.35052 · doi:10.1016/j.jfa.2007.04.021
[5] S.-S. Byun, F. Yao, and S. Zhou, “Gradient estimates in Orlicz space for nonlinear elliptic equations”, J. Funct. Anal. 255:8 (2008), 1851-1873. · Zbl 1156.35038 · doi:10.1016/j.jfa.2008.09.007
[6] B. Dacorogna, Direct methods in the calculus of variations, 2nd ed., Applied Mathematical Sciences 78, Springer, New York, 2008. · Zbl 1140.49001
[7] E. DiBenedetto and J. Manfredi, “On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems”, Amer. J. Math. 115:5 (1993), 1107-1134. · Zbl 0805.35037 · doi:10.2307/2375066
[8] H. Dong and C. Gallarati, “Higher-order elliptic and parabolic equations with VMO assumptions and general boundary conditions”, J. Funct. Anal. 274:7 (2018), 1993-2038. · Zbl 1387.35079 · doi:10.1016/j.jfa.2018.01.011
[9] H. Dong and D. Kim, “Elliptic equations in divergence form with partially BMO coefficients”, Arch. Ration. Mech. Anal. 196:1 (2010), 25-70. · Zbl 1206.35249 · doi:10.1007/s00205-009-0228-7
[10] H. Dong and D. Kim, “On \[L_p\]-estimates for elliptic and parabolic equations with \[A_p\] weights”, Trans. Amer. Math. Soc. 370:7 (2018), 5081-5130. · Zbl 1427.35305 · doi:10.1090/tran/7161
[11] H. Dong and N. V. Krylov, “Fully nonlinear elliptic and parabolic equations in weighted and mixed-norm Sobolev spaces”, Calc. Var. Partial Differential Equations 58:4 (2019), art. id. 145. · Zbl 1418.35211 · doi:10.1007/s00526-019-1591-3
[12] H. Dong and T. Phan, “Mixed-norm \[L_p\]-estimates for non-stationary Stokes systems with singular VMO coefficients and applications”, J. Differential Equations 276 (2021), 342-367. · Zbl 1540.76036 · doi:10.1016/j.jde.2020.12.023
[13] C. Fefferman and E. M. Stein, “\[H^p\] spaces of several variables”, Acta Math. 129:3-4 (1972), 137-193. · Zbl 0257.46078 · doi:10.1007/BF02392215
[14] Y. Giga and H. Sohr, “Abstract \[L^p\] estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains”, J. Funct. Anal. 102:1 (1991), 72-94. · Zbl 0739.35067 · doi:10.1016/0022-1236(91)90136-S
[15] L. Grafakos, Classical Fourier analysis, 3rd ed., Graduate Texts in Mathematics 249, Springer, New York, 2014. · Zbl 1304.42001 · doi:10.1007/978-1-4939-1194-3
[16] R. Haller-Dintelmann, H. Heck, and M. Hieber, “\[L^p-L^q\] estimates for parabolic systems in non-divergence form with VMO coefficients”, J. London Math. Soc. (2) 74:3 (2006), 717-736. · Zbl 1169.35339 · doi:10.1112/S0024610706023192
[17] M. Hieber and J. Prüss, “Heat kernels and maximal \[L^p-L^q\] estimates for parabolic evolution equations”, Comm. Partial Differential Equations 22:9-10 (1997), 1647-1669. · Zbl 0886.35030 · doi:10.1080/03605309708821314
[18] V. V. Jikov, S. M. Kozlov, and O. A. Oleĭnik, Homogenization of differential operators and integral functionals, Springer, Berlin, 1994. · Zbl 0838.35001 · doi:10.1007/978-3-642-84659-5
[19] D. Q. Khai and N. M. Tri, “Solutions in mixed-norm Sobolev-Lorentz spaces to the initial value problem for the Navier-Stokes equations”, J. Math. Anal. Appl. 417:2 (2014), 819-833. · Zbl 1308.35166 · doi:10.1016/j.jmaa.2014.03.068
[20] D. Kim, “Elliptic and parabolic equations with measurable coefficients in \[L_p\]-spaces with mixed norms”, Methods Appl. Anal. 15:4 (2008), 437-468. · Zbl 1223.35127 · doi:10.4310/MAA.2008.v15.n4.a3
[21] J. Kinnunen and S. Zhou, “A local estimate for nonlinear equations with discontinuous coefficients”, Comm. Partial Differential Equations 24:11-12 (1999), 2043-2068. · Zbl 0941.35026 · doi:10.1080/03605309908821494
[22] N. V. Krylov, “SPDEs in \[L_Q((0,\tau]\!],L_P)\] spaces”, Electron. J. Probab. 5 (2000), art. id. 13. · Zbl 0963.60053 · doi:10.1214/EJP.v5-69
[23] N. V. Krylov, “The heat equation in \[L_q((0,T),L_p)\]-spaces with weights”, SIAM J. Math. Anal. 32:5 (2001), 1117-1141. · Zbl 0979.35060 · doi:10.1137/S0036141000372039
[24] N. V. Krylov, “The Calderón-Zygmund theorem and parabolic equations in \[L_p\ (\mathbb{R},C^{2+\alpha})\]-spaces”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1:4 (2002), 799-820. · Zbl 1170.35434
[25] N. V. Krylov, “Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms”, J. Funct. Anal. 250:2 (2007), 521-558. · Zbl 1133.35052 · doi:10.1016/j.jfa.2007.04.003
[26] N. V. Krylov, “Rubio de Francia extrapolation theorem and related topics in the theory of elliptic and parabolic equations: a survey”, Algebra i Analiz 32:3 (2020), 5-38. In Russian; translated in St. Petersburg Math. J. 32:3 (2021), 389-413. · Zbl 1468.35110 · doi:10.1090/spmj/1653
[27] D. Lass Fernandez, “Lorentz spaces, with mixed norms”, J. Functional Analysis 25:2 (1977), 128-146. · Zbl 0354.46020 · doi:10.1016/0022-1236(77)90037-4
[28] Y. Li and L. Nirenberg, “Estimates for elliptic systems from composite material”, Comm. Pure Appl. Math. 56:7 (2003), 892-925. · Zbl 1125.35339 · doi:10.1002/cpa.10079
[29] Y. Y. Li and M. Vogelius, “Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients”, Arch. Ration. Mech. Anal. 153:2 (2000), 91-151. · Zbl 0958.35060 · doi:10.1007/s002050000082
[30] G. M. Lieberman, “Boundary regularity for solutions of degenerate elliptic equations”, Nonlinear Anal. 12:11 (1988), 1203-1219. · Zbl 0675.35042 · doi:10.1016/0362-546X(88)90053-3
[31] P. Maremonti and V. A. Solonnikov, “Estimates for solutions of the nonstationary stokes problem in anisotropic Sobolev spaces with mixed norm”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. \[(POMI) 222 (1995), 124-150\]. In Russian; translated in J. Math. Sci. (New York) 87:5 (1997), 3859-3877. · Zbl 0909.35105 · doi:10.1007/BF02355828
[32] T. Mengesha and N. C. Phuc, “Global estimates for quasilinear elliptic equations on Reifenberg flat domains”, Arch. Ration. Mech. Anal. 203:1 (2012), 189-216. · Zbl 1255.35113 · doi:10.1007/s00205-011-0446-7
[33] M. Růžička, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics 1748, Springer, Berlin, 2000. · Zbl 0962.76001 · doi:10.1007/BFb0104029
[34] L. Weis, “Operator-valued Fourier multiplier theorems and maximal \[L_p\]-regularity”, Math. Ann. 319:4 (2001), 735-758. · Zbl 0989.47025 · doi:10.1007/PL00004457
[35] S. Zheng, X. Zheng, and Z. Feng, “Regularity for a class of degenerate elliptic equations with discontinuous coefficients under natural growth”, J. Math. Anal. Appl. 346:2 (2008), 359-373. · Zbl 1186.35086 · doi:10.1016/j.jmaa.2008.05.059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.