×

Complex methods for bounds on the number of periodic solutions with an application to a neural model. (English) Zbl 1493.34124

The author is interested in determining an upper bound on the number of periodic solutions of some first order scalar differential equation \[ x' = f(t,x), \] where \(f:{\mathbb R}\times{\mathbb R}\to{\mathbb R}\) is a smooth function, periodic in \(t\). After a friendly exposition of a method of Ilyashenko involving complex analysis, he applies it to the model of a single neuron or pool of neurons, thus obtaining an upper bound on the number of periodic solutions. Some open problems are also proposed.

MSC:

34C25 Periodic solutions to ordinary differential equations
30E99 Miscellaneous topics of analysis in the complex plane
92C20 Neural biology
37C60 Nonautonomous smooth dynamical systems

References:

[1] Ahlfors, L., Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable (1979), New York, NY: McGraw-Hill, New York, NY · Zbl 0395.30001
[2] Ashwin, P.; Coombes, S.; Nicks, R., Mathematical frameworks for oscillatory network dynamics in neuroscience, J. Math. Neurosci., 6, 92 (2016) · Zbl 1356.92015
[3] Benardete, D.; Noonburg, V. W.; Pollina, B., Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically harvested logistic equation, Amer. Math. Monthly, 115, 3, 202-219 (2008) · Zbl 1361.34038
[4] Birkhoff, G.; Rota, G-C., Ordinary Differential Equations (1962), Waltham, MA: Ginn and Company, Waltham, MA · Zbl 0183.35601
[5] Blanchard, P.; Devaney, R. L.; Hall, G. R., Differential Equations (1998), Pacific Grove, CA: Brooks/Cole, Pacific Grove, CA
[6] Bottazini, U.; Gray, J., Hidden Harmony—Geometric Fantasies: The Rise of Complex Function Theory (2013), New York: Springer, New York · Zbl 1276.30006
[7] Coddington, E. A.; Levinson, N., Theory of Ordinary Differential Equations (1985), Malabar, FL: Krieger, Malabar, FL
[8] Decker, R.; Noonburg, V. W., A periodically forced Wilson-Cowan system with multiple attractors, SIAM J. Math. Anal, 44, 2, 887-905 (2012) · Zbl 1318.92005
[9] Decker, R., Noonburg, V. W.A single neuron equation with multiple periodic cycles. In preparation. · Zbl 1318.92005
[10] Gray, J., The Real and the Complex: A History of Analysis in the 19th Century (2015), New York, NY: Springer, New York, NY · Zbl 1330.01001
[11] Hale, J. K.; Kocak, H., Dynamics and Bifurcations (1991), New York, NY: Springer, New York, NY · Zbl 0745.58002
[12] Hirsch, M. W.; Smale, S., Differential Equations, Dynamical Systems, and Linear Algebra (1974), Orlando, FL: Academic Press, Orlando, FL · Zbl 0309.34001
[13] Hopfield, J. J., Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci, 79, 2554-2558 (1982) · Zbl 1369.92007 · doi:10.1073/pnas.79.8.2554
[14] Hoppensteadt, F. C.; Izhikevich, E., Weakly Connected Neural Networks (1997), New York, NY: Springer, New York, NY · Zbl 0887.92003
[15] Ilyashenko, Yu., Hilbert-type numbers for Abel equations, growth and zeros of holomorphic functions, Nonlinearity, 13, 4, 1337-1342 (2000) · Zbl 1016.34028 · doi:10.1088/0951-7715/13/4/319
[16] Ilyashenko, Yu., Centennial history of Hilbert’s 16th problem, Bull. Amer. Math. Soc. (N.S.), 39, 3, 301-354 (2002) · Zbl 1004.34017
[17] Ilyashenko, Yu.; Panov, A., Some upper estimates of the number of limit cycles of planar vector fields with an application to the Liénard equations, Moscow Math. J, 1, 4, 583-599 (2001) · Zbl 1008.34027 · doi:10.17323/1609-4514-2001-1-4-583-599
[18] Izhikevich, E., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (2007), Cambridge, MA: MIT Press, Cambridge, MA
[19] Jensen, J., Sur un nouvel et important théorème de la théorie des fonctions, Acta, 22, 359-364 (1899) · JFM 30.0364.02 · doi:10.1007/BF02417878
[20] Jessen, B.; Gillispie, C. C., Dictionary of Scientific Biography, 7, Jensen, Johan Ludwig William Valdemar, 101 (1973), New York: Scribner, New York
[21] Keen, L.; Lakic, N., Hyperbolic Geometry from a Local Viewpoint (2007), New York: Cambridge Univ. Press, New York · Zbl 1190.30001
[22] Lefschetz, S., Differential Equations: Geometric Theory (1963), New York: John Wiley, New York · Zbl 0107.07101
[23] Lins Neto, A., On the number of solutions of the equation, Invent. Math, 59, 1, 67-76 (1980) · Zbl 0448.34012
[24] Murray, J. D., Mathematical Biology (1993), New York, NY: Springer, New York, NY · Zbl 0779.92001
[25] Noonburg, V. W., Differential Equations: From Calculus to Dynamical Systems (2019), Providence, RI: MAA Press, Providence, RI · Zbl 1442.34001
[26] Noonburg, V. W.; Benardete, D.; Pollina, B., A periodically forced Wilson-Cowan system, SIAM J. Appl. Math, 63, 5, 1585-1603 (2003) · Zbl 1035.92007
[27] Rolston, J. D.; Eaglot, D. J.; Wang, D, D.; Shih, T.; Chang, E. F., Comparison of seizure control outcomes and the safety of vagus nerve, thalamic deep brain, and responsive neurostimulation: evidence from randomized control trials, Neurosurg. Focus, 32, 3, E14 (2012)
[28] Saks, S.; Zygmund, A., Analytic Functions (1971), Amsterdam: Elsevier, Amsterdam
[29] Smale, S., Mathematical problems for the next century, Math. Intelligencer, 20, 7-15 (1998) · Zbl 0947.01011 · doi:10.1007/BF03025291
[30] Veech, W. A., A Second Course in Complex Analysis (1967), New York: W. A. Benjamin, New York · Zbl 0145.29901
[31] Wilson, H. R.; Cowan, J. D., Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J, 12, 1-24 (1972) · doi:10.1016/S0006-3495(72)86068-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.