×

A proof of Newman’s conjecture for the extended Selberg class. (English) Zbl 1493.11117

The xi-Riemann function \(\xi\) has the Fourier representation \[\xi\left(\frac{1+iz}{2}\right) = \int^\infty_{-\infty}\Phi(u)e^{izu} du,\] where \[\Phi(u):=4\sum_{n=1}^\infty(2\pi^2n^4e^{9u}-3\pi n^2e^{5u})e^{-\pi n^2e^{4u}}\] The family of entire functions \(\{\xi_t\}_{t\in \mathbb{R}}\) is defined as \[\xi_t\left(\frac{1+iz}{2}\right) := \int_{-\infty}^\infty e^{tu^2}\Phi(u)e^{izu} du\] Newman concluded that there exists a real number \(\Lambda \leq 1/2\), called the de Bruijn-Newman constant such that \(\xi_t\) has all its zeros on the critical line iff \(t \geq \Lambda\).
The Riemann hypothesis is equivalent to \(\Lambda \leq 0\). Newman’s conjecture (proved later by Rodgers and Tao) is that \(\Lambda \geq 0\).
This paper provides a simpler proof of the Newman’s conjecture, which does not rely on any information about the zeros of the zeta function.

MSC:

11M06 \(\zeta (s)\) and \(L(s, \chi)\)
11M41 Other Dirichlet series and zeta functions

References:

[1] L. V. Ahlfors, Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, 3rd ed., Int. Ser. Pure Appl. Math., McGraw-Hill, New York, 1978.
[2] J. Andrade, A. Chang, and S. J. Miller, Newman’s conjecture in various settings, J. Number Theory 144 (2014), 70-91. · Zbl 1296.11113
[3] H. Bohr, Über eine quasi-periodische Eigenschaft Dirichletscher Reihen mit Anwen-dung auf die Dirichletschen L-Funktionen, Math. Ann. 85 (1922), 115-122. · JFM 48.0343.02
[4] N. G. de Bruijn, The roots of trigonometric integrals, Duke Math. J. 17 (1950), 197-226. · Zbl 0038.23302
[5] J. B. Conrey and A. Ghosh, On the Selberg class of Dirichlet series: small degrees, Duke Math. J. 72 (1993), 673-693. · Zbl 0796.11037
[6] G. Csordas, T. S. Norfolk, and R. S. Varga, A lower bound for the de Bruijn-Newman constant Λ, Numer. Math. 52 (1988), 483-497. · Zbl 0663.65017
[7] G. Csordas, A. M. Odlyzko, W. Smith, and R. S. Varga, A new Lehmer pair of zeros and a new lower bound for the de Bruijn-Newman constant Λ, Electron. Trans. Numer. Anal. 1 (1993), 104-111. · Zbl 0807.11059
[8] G. Csordas, A. Ruttan, and R. S. Varga, The Laguerre inequalities with applications to a problem associated with the Riemann hypothesis, Numer. Algorithms 1 (1991), 305-329. · Zbl 0751.11043
[9] G. Csordas, W. Smith, and R. S. Varga, Lehmer pairs of zeros, the de Bruijn-Newman constant Λ, and the Riemann hypothesis, Constr. Approx. 10 (1994), 107-129. · Zbl 0792.30020
[10] J. Kaczorowski, Axiomatic theory of L-functions: the Selberg class, in: Analytic Num-ber Theory, Lecture Notes in Math. 1891, Springer, Berlin, 2006, 133-209. · Zbl 1147.11050
[11] J. Kaczorowski and A. Perelli, On the structure of the Selberg class. I. 0 ≤ d ≤ 1, Acta Math. 182 (1999), 207-241. · Zbl 1126.11335
[12] C. M. Newman, Fourier transforms with only real zeros, Proc. Amer. Math. Soc. 61 (1976), 245-251. · Zbl 0342.42007
[13] T. S. Norfolk, A. Ruttan, and R. S. Varga, A lower bound for the de Bruijn-Newman constant Λ. II, in: Progress in Approximation Theory (Tampa, FL, 1990), Springer Ser. Comput. Math. 19, Springer, New York, 1992, 403-418. · Zbl 0787.30016
[14] A. M. Odlyzko, An improved bound for the de Bruijn-Newman constant, Numer. Algorithms 25 (2000), 293-303. · Zbl 0967.11034
[15] G. Pólya, Bemerkung über die Integraldarstellung der Riemannschen ξ-Funktion, Acta Math. 48 (1926), 305-317. · JFM 52.0335.02
[16] G. Pólya, Über trigonometrische Integrale mit nur reellen Nullstellen, J. Reine Angew. Math. 158 (1927), 6-18. · JFM 53.0308.01
[17] D. H. J. Polymath, Effective approximation of heat flow evolution of the Riemann ξ function, and a new upper bound for the de Bruijn-Newman constant, Res. Math. Sci. 6 (2019), no. 3, art. 31, 67 pp. · Zbl 1423.30022
[18] H. J. J. te Riele, A new lower bound for the de Bruijn-Newman constant, Numer. Math. 58 (1991), 661-667. · Zbl 0704.11058
[19] B. Rodgers and T. Tao, The de Bruijn-Newman constant is non-negative, Forum Math. Pi 8 (2020), art. e6, 62 pp. · Zbl 1454.11158
[20] Y. Saouter, X. Gourdon, and P. Demichel, An improved lower bound for the de Bruijn-Newman constant, Math. Comp. 80 (2011), no. 276, 2281-2287. · Zbl 1267.11094
[21] A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in: Proc. Amalfi Conf. on Analytic Number Theory (Maiori, 1989), Univ. di Salerno, Salerno, 1992, 367-385. · Zbl 0787.11037
[22] J. Stopple, Notes on low discriminants and the generalized Newman conjecture, Funct. Approx. Comment. Math. 51 (2014), 23-41. · Zbl 1357.11078
[23] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Clarendon Press, New York, 1986. · Zbl 0601.10026
[24] Alexander Dobner Department of Mathematics UCLA 520 Portola Plaza Los Angeles, CA 90095, U.S.A. E-mail: adobner@math.ucla.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.