×

Sequential image recovery from noisy and under-sampled Fourier data. (English) Zbl 1492.94026

Summary: A new algorithm is developed to jointly recover a temporal sequence of images from noisy and under-sampled Fourier data. Specifically we consider the case where each data set is missing vital information that prevents its (individual) accurate recovery. Our new method is designed to restore the missing information in each individual image by “borrowing” it from the other images in the sequence. As a result, all of the individual reconstructions yield improved accuracy. The use of high resolution Fourier edge detection methods is essential to our algorithm. In particular, edge information is obtained directly from the Fourier data which leads to an accurate coupling term between data sets. Moreover, data loss is largely avoided as coarse reconstructions are not required to process inter- and intra-image information. Numerical examples are provided to demonstrate the accuracy, efficiency and robustness of our new method.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
65F22 Ill-posedness and regularization problems in numerical linear algebra
65K10 Numerical optimization and variational techniques
68U10 Computing methodologies for image processing

References:

[1] Gelb, A.; Tadmor, E., Detection of edges in spectral data, Appl. Comput. Harmon. Anal., 7, 1, 101-135 (1999) · Zbl 0952.42001 · doi:10.1006/acha.1999.0262
[2] Adcock, B.; Gelb, A.; Song, G.; Sui, Y., Joint sparse recovery based on variances, SIAM J. Sci. Comput., 41, 1, 246-268 (2019) · Zbl 1454.94020 · doi:10.1137/17M1155983
[3] Gelb, A.; Scarnati, T., Reducing effects of bad data using variance based joint sparsity recovery, J. Sci. Comput., 78, 1, 94-120 (2019) · Zbl 1410.65120 · doi:10.1007/s10915-018-0754-2
[4] Scarnati, T., Gelb, A.: Accurate and efficient image reconstruction from multiple measurements of fourier samples (2020) · Zbl 1474.94026
[5] Candès, EJ; Romberg, J.; Tao, T., Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory, 52, 2, 489-509 (2006) · Zbl 1231.94017 · doi:10.1109/TIT.2005.862083
[6] Candès, EJ; Romberg, JK; Tao, T., Stable signal recovery from incomplete and inaccurate measurements, Commun. Pure Appl. Math. J. Issued Courant Inst. Math. Sci., 59, 8, 1207-1223 (2006) · Zbl 1098.94009 · doi:10.1002/cpa.20124
[7] Candès, EJ; Tao, T., Near-optimal signal recovery from random projections: universal encoding strategies?, IEEE Trans. Inf. Theory, 52, 12, 5406-5425 (2006) · Zbl 1309.94033 · doi:10.1109/TIT.2006.885507
[8] Donoho, DL, Compressed sensing, IEEE Trans. Inf. Theory, 52, 4, 1289-1306 (2006) · Zbl 1288.94016 · doi:10.1109/TIT.2006.871582
[9] Candès, EJ; Wakin, MB; Boyd, SP, Enhancing sparsity by reweighted \(\ell_1\) minimization, J. Fourier Anal. Appl., 14, 5-6, 877-905 (2008) · Zbl 1176.94014 · doi:10.1007/s00041-008-9045-x
[10] Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: IEEE international conference on acoustics, speech and signal processing, pp. 3869-3872 (2008)
[11] Daubechies, I.; DeVore, R.; Fornasier, M.; Gunturk, CS, Iteratively re-weighted least squares minimization for sparse recovery, Commun. Pure Appl. Math. J. Issued Courant Inst. Math. Sci., 63, 1, 1-38 (2010) · Zbl 1202.65046 · doi:10.1002/cpa.20303
[12] Liu, Y.; Ma, J.; Fan, Y.; Liang, Z., Adaptive-weighted total variation minimization for sparse data toward low-dose X-ray computed tomography image reconstruction, Phys. Med. Biol., 57, 23, 7923-7956 (2012) · doi:10.1088/0031-9155/57/23/7923
[13] Langer, A., Automated parameter selection for total variation minimization in image restoration, J. Math. Imaging Vis., 57, 2, 239-268 (2017) · Zbl 1369.94030 · doi:10.1007/s10851-016-0676-2
[14] Canny, J., A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell., 6, 679-698 (1986) · doi:10.1109/TPAMI.1986.4767851
[15] Sobel, I., Feldman, G.: A \(3\times 3\) isotropic gradient operator for image processing. A Talk at the Stanford Artificial Project, 271-272 (1968)
[16] Jin-Yu, Z., Yan, C., Xian-Xiang, H.: Edge detection of images based on improved Sobel operator and genetic algorithms. In: IEEE international conference on image analysis and signal processing, pp. 31-35 (2009)
[17] Gao, W., Zhang, X., Yang, L., Liu, H.: An improved Sobel edge detection. In: IEEE 3rd international conference on computer science and information technology, vol. 5, pp. 67-71 (2010)
[18] Gelb, A.; Tadmor, E., Detection of edges in spectral data II. Nonlinear enhancement, SIAM J. Num. Anal., 38, 4, 1389-1408 (2000) · Zbl 0990.42025 · doi:10.1137/S0036142999359153
[19] Archibald, R.; Gelb, A.; Platte, R., Image reconstruction from undersampled Fourier data using the polynomial annihilation transform, J. Sci. Comput. (2015) · Zbl 1339.65026 · doi:10.1007/s10915-015-0088-2
[20] Martinez, A.; Gelb, A.; Gutierrez, A., Edge detection from non-uniform Fourier data using the convolutional gridding algorithm, J. Sci. Comput., 61, 3, 490-512 (2014) · Zbl 1307.65026 · doi:10.1007/s10915-014-9836-y
[21] Gelb, A.; Song, G., Detecting edges from non-uniform Fourier data using Fourier frames, J. Sci. Comput., 71, 2, 737-758 (2017) · Zbl 1384.65097 · doi:10.1007/s10915-016-0320-8
[22] Viswanathan, A.; Gelb, A.; Cochran, D., Iterative design of concentration factors for jump detection, J. Sci. Comput., 51, 3, 631-649 (2012) · Zbl 1258.94020 · doi:10.1007/s10915-011-9524-0
[23] Xie, W.; Deng, Y.; Wang, K.; Yang, X.; Luo, Q., Reweighted \(\ell_1\) regularization for restraining artifacts in FMT reconstruction images with limited measurements, Opt. Lett., 39, 14, 4148-4151 (2014) · doi:10.1364/OL.39.004148
[24] Landi, G., The Lagrange method for the regularization of discrete ill-posed problems, Comput. Optim. Appl., 39, 3, 347-368 (2008) · Zbl 1151.91732 · doi:10.1007/s10589-007-9059-3
[25] Wen, Y-W; Chan, RH, Parameter selection for total-variation-based image restoration using discrepancy principle, IEEE Trans. Image Process., 21, 4, 1770-1781 (2011) · Zbl 1373.94440 · doi:10.1109/TIP.2011.2181401
[26] Yang, X.; Hofmann, R.; Dapp, R.; Van de Kamp, T.; dos Santos Rolo, T.; Xiao, X.; Moosmann, J.; Kashef, J.; Stotzka, R., TV-based conjugate gradient method and discrete L-curve for few-view CT reconstruction of X-ray in vivo data, Opt. Express, 23, 5, 5368-5387 (2015) · doi:10.1364/OE.23.005368
[27] Gong, C.; Zeng, L., Adaptive iterative reconstruction based on relative total variation for low-intensity computed tomography, Signal Process., 165, 149-162 (2019) · doi:10.1016/j.sigpro.2019.06.031
[28] Vogel, CR, Regularization parameter selection methods, Soc. Ind. Appl. Math. (2002) · doi:10.1137/1.9780898717570.ch7
[29] Sanders, T.; Platte, RB; Skeel, RD, Effective new methods for automated parameter selection in regularized inverse problems, Appl. Numer. Math., 152, 29-48 (2020) · Zbl 1440.65032 · doi:10.1016/j.apnum.2020.01.015
[30] Shchukina, A.; Kasprzak, P.; Dass, R.; Nowakowski, M.; Kazimierczuk, K., Pitfalls in compressed sensing reconstruction and how to avoid them, J. Biomol. NMR, 68, 2, 79-98 (2017) · doi:10.1007/s10858-016-0068-3
[31] Kang, M-S; Kim, K-T, Compressive sensing based SAR imaging and autofocus using improved Tikhonov regularization, IEEE Sens. J., 19, 14, 5529-5540 (2019) · doi:10.1109/JSEN.2019.2904611
[32] Churchill, V., Archibald, R., Gelb, A.: Edge-adaptive \(\ell_2\) regularization image reconstruction from non-uniform Fourier data. Inverse Probl. Imaging. 13 (2019). doi:10.3934/ipi.2019042 · Zbl 1440.94002
[33] Archibald, R.; Gelb, A.; Yoon, J., Polynomial fitting for edge detection in irregularly sampled signals and images, SIAM J. Numer. Anal., 43, 1, 259-279 (2005) · Zbl 1093.41009 · doi:10.1137/S0036142903435259
[34] Song, P., Mota, J.F.C., Deligiannis, N., Rodrigues, M.R.D.: Coupled dictionary learning for multimodal image super-resolution. In: IEEE global conference on signal and information processing (GlobalSIP), pp. 162-166 (2016). doi:10.1109/GlobalSIP.2016.7905824
[35] Song, P.; Deng, X.; Mota, JFC; Deligiannis, N.; Dragotti, PL; Rodrigues, MRD, Multimodal image super-resolution via joint sparse representations induced by coupled dictionaries, IEEE Trans. Comput. Imaging, 6, 57-72 (2020) · doi:10.1109/TCI.2019.2916502
[36] Rigie, DS; Rivière, PJL, Joint reconstruction of multi-channel, spectral CT data via constrained total nuclear variation minimization, Phys. Med. Biol., 60, 5, 1741-1762 (2015) · doi:10.1088/0031-9155/60/5/1741
[37] Kazantsev, D.; Jørgensen, JS; Andersen, MS; Lionheart, WRB; Lee, PD; Withers, PJ, Joint image reconstruction method with correlative multi-channel prior for X-ray spectral computed tomography, Inverse Probl., 34, 6 (2018) · Zbl 1441.94015 · doi:10.1088/1361-6420/aaba86
[38] Eslahi, N., Foi, A.: Joint sparse recovery of misaligned multimodal images via adaptive local and nonlocal cross-modal regularization. In: IEEE 8th international workshop on computational advances in multi-sensor adaptive processing (CAMSAP), pp. 111-115 (2019). doi:10.1109/CAMSAP45676.2019.9022478
[39] Kazantsev, D.; Lionheart, WRB; Withers, PJ; Lee, PD, Multimodal image reconstruction using supplementary structural information in total variation regularization, Sens. Imaging, 15, 1, 97 (2014) · doi:10.1007/s11220-014-0097-5
[40] Chen, Y., Fang, R., Ye, X.: Joint image edge reconstruction and its application in multi-contrast MRI (2017) arXiv:1712.02000 [math.NA]
[41] Chen, G.; Hay, GJ; Carvalho, LMT; Wulder, MA, Object-based change detection, Int. J. Remote Sens., 33, 14, 4434-4457 (2012) · doi:10.1080/01431161.2011.648285
[42] Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D., Change detection from remotely sensed images: From pixel-based to object-based approaches, ISPRS J. Photogramm. Remote. Sens., 80, 91-106 (2013) · doi:10.1016/j.isprsjprs.2013.03.006
[43] Tewkesbury, AP; Comber, AJ; Tate, NJ; Lamb, A.; Fisher, PF, A critical synthesis of remotely sensed optical image change detection techniques, Remote Sens. Environ., 160, 1-14 (2015) · doi:10.1016/j.rse.2015.01.006
[44] Inglada, J.; Mercier, G., A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis, IEEE Trans. Geosci. Remote Sens., 45, 5, 1432-1445 (2007) · doi:10.1109/TGRS.2007.893568
[45] Thonfeld, F.; Feilhauer, H.; Braun, M.; Menz, G., Robust change vector analysis (RCVA) for multi-sensor very high resolution optical satellite data, Int. J. Appl. Earth Obs. Geoinf., 50, 131-140 (2016)
[46] Ye, S.; Chen, D.; Yu, J., A targeted change-detection procedure by combining change vector analysis and post-classification approach, ISPRS, 114, 115-124 (2016) · doi:10.1016/j.isprsjprs.2016.01.018
[47] McDermid, GJ; Linke, J.; Pape, AD; Laskin, DN; McLane, AJ; Franklin, SE, Object-based approaches to change analysis and thematic map update: challenges and limitations, Can. J. Remote. Sens., 34, 5, 462-466 (2008) · doi:10.5589/m08-061
[48] Chen, G.; Zhao, K.; Powers, R., Assessment of the image misregistration effects on object-based change detection, ISPRS J. Photogramm. Remote. Sens., 87, 19-27 (2014) · doi:10.1016/j.isprsjprs.2013.10.007
[49] Hsiao, Y.-T., Chuang, C.-L., Jiang, J.-A., Chien, C.-C.: A contour based image segmentation algorithm using morphological edge detection. In: IEEE international conference on systems, man and cybernetics, vol. 3, pp. 2962-2967 (2005). doi:10.1109/ICSMC.2005.1571600
[50] Papari, G.; Petkov, N., Adaptive pseudo dilation for gestalt edge grouping and contour detection, IEEE Trans. Image Process., 17, 10, 1950-1962 (2008) · Zbl 1371.94285 · doi:10.1109/TIP.2008.2002306
[51] Papari, G.; Petkov, N., Edge and line oriented contour detection: state of the art, Image Vis. Comput., 29, 2-3, 79-103 (2011) · doi:10.1016/j.imavis.2010.08.009
[52] Gao, F.; Wang, M.; Cai, Y.; Lu, S., Extracting closed object contour in the image: remove, connect and fit, Pattern Anal. Appl., 22, 3, 1123-1136 (2019) · doi:10.1007/s10044-018-0749-5
[53] Archibald, R.; Gelb, A., A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity, IEEE Trans. Med. Imaging, 21, 4, 305-319 (2002) · doi:10.1109/TMI.2002.1000255
[54] Archibald, R.; Chen, K.; Gelb, A.; Renaut, R., Improving tissue segmentation of human brain MRI through preprocessing by the Gegenbauer reconstruction method, Neuroimage, 20, 1, 489-502 (2003) · doi:10.1016/S1053-8119(03)00260-X
[55] Afaq, Y.; Manocha, A., Analysis on change detection techniques for remote sensing applications: a review, Ecol. Inf., 63 (2021) · doi:10.1016/j.ecoinf.2021.101310
[56] Ash, J.N.: A unifying perspective of coherent and non-coherent change detection. In: Zelnio, E., Garber, F.D. (eds.) Algorithms for Synthetic Aperture Radar Imagery XXI, vol. 9093, pp. 90-98. SPIE, (2014). doi:10.1117/12.2054338. International Society for Optics and Photonics
[57] Li, H.; Gong, M.; Wang, Q.; Liu, J.; Su, L., A multiobjective fuzzy clustering method for change detection in SAR images, Appl. Soft Comput., 46, 767-777 (2016) · doi:10.1016/j.asoc.2015.10.044
[58] Ji, S.; Xue, Y.; Carin, L., Bayesian compressive sensing, IEEE Trans. Signal Process., 56, 6, 2346-2356 (2008) · Zbl 1390.94231 · doi:10.1109/TSP.2007.914345
[59] Tipping, ME, Sparse Bayesian learning and the relevance vector machine, J. Mach. Learn. Res., 1, 211-244 (2001) · Zbl 0997.68109
[60] Wipf, DP; Rao, BD, Sparse Bayesian learning for basis selection, IEEE Trans. Signal Process., 52, 8, 2153-2164 (2004) · Zbl 1369.94318 · doi:10.1109/TSP.2004.831016
[61] Boyd, S., Parikh, N., Chu, E.: Distributed optimization and statistical learning via the alternating direction method of multipliers (2011). doi:10.1561/2200000016 · Zbl 1229.90122
[62] Ellsworth, M., Thomas, C.: A fast algorithm for image deblurring with total variation regularization. Unmanned Tech Solutions 4 (2014)
[63] Lalwani, G.; Livingston Sundararaj, J.; Schaefer, K.; Button, T.; Sitharaman, B., Synthesis, characterization, in vitro phantom imaging, and cytotoxicity of a novel graphene-based multimodal magnetic resonance imaging - X-ray computed tomography contrast agent, J. Mater. Chem. B, 2, 22, 3519-3530 (2015) · doi:10.1039/C4TB00326H
[64] Glaubitz, J.; Gelb, A., High order edge sensors with \(\ell^1\) regularization for enhanced discontinuous Galerkin methods, SIAM J. Sci. Comput., 41, 2, 1304-1330 (2019) · Zbl 1416.65377 · doi:10.1137/18M1195280
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.