×

Global Mittag-Leffler stability for fractional-order quaternion-valued neural networks with piecewise constant arguments and impulses. (English) Zbl 1492.93129

Summary: This paper is devoted to analysing the global Mittag-Leffler stability of fractional-order quaternion-valued neural networks with piecewise constant arguments and impulses. The quaternion direct method is adopted to address the considered model avoiding any decomposition. By utilising the matrix inequality technique and Lyapunov direct method, some sufficient conditions to guarantee the global Mittag-Leffler stability of equilibrium point for the considered model are obtained in the form of quaternion-valued linear matrix inequalities (LMIs). To certify the validity of the derived result, a numerical example is presented.

MSC:

93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93B70 Networked control
93C27 Impulsive control/observation systems
93A14 Decentralized systems
Full Text: DOI

References:

[1] Akhmet, M. U.; Arugaslan, D.; Yilmaz, E., Stability analysis of recurrent neural networks with piecewise constant argument of generalized type, Neural Networks, 23, 7, 805-811 (2010) · Zbl 1400.34112 · doi:10.1016/j.neunet.2010.05.006
[2] Akhmet, M. U.; Yilmaz, E., Impulsive Hopfield-type neural network system with piecewise constant argument, Nonlinear Analysis: Real World Applications, 11, 4, 2584-2593 (2010) · Zbl 1202.92001 · doi:10.1016/j.nonrwa.2009.09.003
[3] Ali, M. S.; Narayanan, G.; Shekher, V.; Alsaedi, A.; Ahmad, B., Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays, Communications in Nonlinear Science and Numerical Simulation, 83 (2020) · Zbl 1454.34102 · doi:10.1016/j.cnsns.2019.105088
[4] Chen, X.; Li, Z.; Song, Q.; Hu, J.; Tan, Y., Robust stability analysis of quaternion-valued neural networks with time delays and parameter uncertainties, Neural Networks, 91, 55-65 (2017) · Zbl 1443.34075 · doi:10.1016/j.neunet.2017.04.006
[5] Chen, Y.; Wang, Z.; Hu, J.; Han, Q.-L., Synchronization control for discrete-time-delayed dynamical networks with switching topology under actuator saturations, IEEE Transactions on Neural Networks and Learning Systems, 32, 5, 2040-2053 (2021) · doi:10.1109/TNNLS.2020.2996094
[6] Cooke, K.; Wiener, J., Retarded differential equations with piecewise constant delays, Journal of Mathematical Analysis and Applications, 99, 1, 265-297 (1984) · Zbl 0557.34059 · doi:10.1016/0022-247x(84)90248-8
[7] Hu, J.; Wang, Z.; Liu, G.-P.; Jia, C.; Williams, J., Event-triggered recursive state estimation for dynamical networks under randomly switching topologies and multiple missing measurements, Automatica, 115, 7 (2020) · Zbl 1436.93084 · doi:10.1016/j.automatica.2020.108908
[8] Li, H.; Kao, Y.; Hu, C.; Jiang, H.; Jiang, Y., Robust exponential stability of fractional-order coupled quaternion-valued neural networks with parametric uncertainties and impulsive effects, Chaos, Solitons and Fractals, 143 (2021) · Zbl 1498.82021 · doi:10.1016/j.chaos.2020.110598
[9] Li, J.; Wang, Z.; Dong, H.; Ghinea, G., Outlier-resistant remote state estimation for recurrent neural networks with mixed time-delays, IEEE Transactions on Neural Networks and Learning Systems, 32, 5, 2266-2273 (2021) · doi:10.1109/TNNLS.2020.2991151
[10] Li, Y.; Chen, Y.; Podlubny, I., Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Computers and Mathematics with Applications, 59, 5, 1810-1821 (2010) · Zbl 1189.34015 · doi:10.1016/j.camwa.2009.08.019
[11] Li, Y.; Yang, T.; Tong, S., Adaptive neural networks finite-time optimal control for a class of nonlinear systems, IEEE Transactions on Neural Networks and Learning Systems, 31, 11, 4451-4460 (2020) · doi:10.1109/TNNLS.2019.2955438
[12] Lin, X., & Wu, A. (2018). Stability analysis of complex-valued neural networks with generalized piecewise constant argument. In 2018 Ninth International Conference on Intelligent Control and Information Processing (ICICIP) (pp. 21-28).
[13] Liu, H.; Wang, Z.; Fei, W.; Li, J., Resilient \(####\) state estimation for discrete-time stochastic delayed memristive neural networks: A dynamic event-triggered mechanism, IEEE Transactions on Cybernetics (2020) · doi:10.1109/TCYB.2020.3021556
[14] Liu, S.; Wang, Z.; Chen, Y.; Wei, G., Dynamic event-based state estimation for delayed artificial neural networks with multiplicative noises: A gain-scheduled approach, Neural Networks, 132, 4, 211-219 (2020) · Zbl 1478.93408 · doi:10.1016/j.neunet.2020.08.023
[15] Liu, S.; Wang, Z.; Wang, L.; Wei, G., \(####\) pinning control of complex dynamical networks under dynamic quantization effects: A coupled backward Riccati equation approach, IEEE Transactions on Cybernetics (2020) · doi:10.1109/TCYB.2020.3021982
[16] Liu, Y.; Zhang, D.; Lou, J.; Lu, J.; Cao, J., Stability analysis of quaternion-valued neural networks: Decomposition and direct approaches, IEEE Transactions on Neural Networks and Learning Systems, 29, 9, 4201-4211 (2018) · doi:10.1109/TNNLS.2017.2755697
[17] Pahnehkolaei, S. M. A.; Alfi, A.; Machado, J., Stability analysis of fractional quaternion-valued leaky integrator echo state neural networks with multiple time-varying delays, Neurocomputing, 331, 2, 388-402 (2019) · doi:10.1016/j.neucom.2018.11.021
[18] Podlubny, I., Fractional differential equations (1999), Academic Press. · Zbl 0918.34010
[19] Pratap, A.; Raja, R.; Sowmiya, C.; Bagdasar, O.; Cao, J.; Rajchakit, G., Robust generalized Mittag-Leffler synchronization of fractional order neural networks with discontinuous activation and impulses, Neural Networks, 103, 3, 128-141 (2018) · Zbl 1441.93239 · doi:10.1016/j.neunet.2018.03.012
[20] Shen, B.; Wang, Z.; Wang, D.; Li, Q., State-saturated recursive filter design for stochastic time-varying nonlinear complex networks under deception attacks, IEEE Transactions on Neural Networks and Learning Systems, 31, 10, 3788-3800 (2020) · doi:10.1109/TNNLS.2019.2946290
[21] Shen, W.; Zeng, Z.; Wen, S., Synchronization of complex dynamical network with piecewise constant argument of generalized type, Neurocomputing, 173, 1, 671-675 (2016) · doi:10.1016/j.neucom.2015.08.014
[22] Song, Q.; Chen, Y.; Zhao, Z.; Liu, Y.; Alsaadi, F. E., Robust stability of fractional-order quaternion-valued neural networks with neutral delays and parameter uncertainties, Neurocomputing, 420, 70-81 (2021) · doi:10.1016/j.neucom.2020.08.059
[23] Srivastava, H.; Abbas, S.; Tyagi, S.; Lassoued, D., Global exponential stability of fractional-order impulsive neural networks with time-varying and distributed delay, Mathematical Methods in the Applied Sciences, 41, 5, 2095-2104 (2018) · Zbl 1391.34130 · doi:10.1002/mma.4736
[24] Stamova, I.; Stamov, G., Functional and impulsive differential equations of fractional order: Qualitative analysis and applications (2017), CRC Press · Zbl 1365.34003
[25] Tu, Z.; Zhao, Y.; Ding, N.; Feng, Y.; Zhang, W., Stability analysis of quaternion-valued neural networks with both discrete and distributed delays, Applied Mathematics and Computation, 343, 1, 342-353 (2019) · Zbl 1428.92016 · doi:10.1016/j.amc.2018.09.049
[26] Udhayakumar, K.; Rakkiyappan, R.; Cao, J.; Tan, X., Mittag-Leffler stability analysis of multiple equilibrium points in impulsive fractional-order quaternion-valued neural networks, Frontiers of Information Technology & Electronic Engineering, 21, 2, 234-246 (2020) · doi:10.1631/FITEE.1900409
[27] Veloz, T.; Pinto, M., Existence, computability and stability for solutions of the diffusion equation with general piecewise constant argument, Journal of Mathematical Analysis and Applications, 426, 1, 330-339 (2015) · Zbl 1515.35115 · doi:10.1016/j.jmaa.2014.10.045
[28] Wan, L.; Wu, A., Multistability in Mittag-Leffler sense of fractional-order neural networks with piecewise constant arguments, Neurocomputing, 286, 11, 1-10 (2018) · doi:10.1016/j.neucom.2018.01.049
[29] Wang, H.; Wei, G.; Wen, S.; Huang, T., Impulsive disturbance on stability analysis of delayed quaternion-valued neural networks, Applied Mathematics and Computation, 390, 12 (2021) · Zbl 1508.34064 · doi:10.1016/j.amc.2020.125680
[30] Wang, J.; Zhou, Y.; Fečkan, M., Nonlinear impulsive problems for fractional differential equations and Ulam stability, Computers and Mathematics with Applications, 64, 10, 3389-3405 (2012) · Zbl 1268.34033 · doi:10.1016/j.camwa.2012.02.021
[31] Wang, L.; Wang, Z.; Wei, G.; Alsaadi, F. E., Finite-time state estimation for recurrent delayed neural networks with component-based event-triggering protocol, IEEE Transactions on Neural Networks and Learning Systems, 29, 4, 1046-1057 (2018) · doi:10.1109/TNNLS.2016.2635080
[32] Wang, L.; Wu, H.; Liu, D.; Boutat, D.; Chen, Y., Lur’e Postnikov Lyapunov functional technique to global Mittag-Leffler stability of fractional-order neural networks with piecewise constant argument, Neurocomputing, 302, 23-32 (2018) · doi:10.1016/j.neucom.2018.03.050
[33] Wang, M.; Wang, Z.; Chen, Y.; Sheng, W., Event-based adaptive neural tracking control for discrete-time stochastic nonlinear systems: A triggering threshold compensation strategy, IEEE Transactions on Neural Networks and Learning Systems, 31, 6, 1968-1981 (2020) · doi:10.1109/TNNLS.2019.2927595
[34] Wei, R.; Cao, J., Fixed-time synchronization of quaternion-valued memristive neural networks with time delays, Neural Networks, 113, 1-10 (2019) · Zbl 1441.93285 · doi:10.1016/j.neunet.2019.01.014
[35] Wu, A.; Liu, L.; Huang, T.; Zeng, Z., Mittag-Leffler stability of fractional-order neural networks in the presence of generalized piecewise constant arguments, Neural Networks, 85, 12, 118-127 (2017) · Zbl 1432.34102 · doi:10.1016/j.neunet.2016.10.002
[36] Wu, A.; Zeng, Z., Output convergence of fuzzy neurodynamic system with piecewise constant argument of generalized type and time-varying input, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46, 12, 1689-1702 (2016) · doi:10.1109/TSMC.2016.2524060
[37] Yan, H.; Qiao, Y.; Duan, L.; Miao, J., Novel methods to global Mittag-Leffler stability of delayed fractional-order quaternion-valued neural networks, Neural Networks, 142, 5, 500-508 (2021) · Zbl 1526.93252 · doi:10.1016/j.neunet.2021.07.005
[38] Yang, S.; Hu, C.; Yu, J.; Jiang, H., Exponential stability of fractional-order impulsive control systems with applications in synchronization, IEEE Transactions on Cybernetics, 50, 7, 3157-3168 (2020) · doi:10.1109/TCYB.2019.2906497
[39] Yang, X.; Li, C.; Huang, T.; Song, Q., Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses, Applied Mathematics and Computation, 293, 3, 416-422 (2017) · Zbl 1411.34023 · doi:10.1016/j.amc.2016.08.039
[40] Yang, X.; Li, C.; Song, Q.; Chen, J.; Huang, J., Global Mittag-Leffler stability and synchronization analysis of fractional-order quaternion-valued neural networks with linear threshold neurons, Neural Networks, 105, 3, 88-103 (2018) · Zbl 1441.93209 · doi:10.1016/j.neunet.2018.04.015
[41] You, X.; Song, Q.; Liang, J.; Liu, Y.; Alsaadi, F. E., Global μ-stability of quaternion-valued neural networks with mixed time-varying delays, Neurocomputing, 290, 12-25 (2018) · doi:10.1016/j.neucom.2018.02.030
[42] Zhang, L.; Yang, Y., Different impulsive effects on synchronization of fractional-order memristive BAM neural networks, Nonlinear Dynamics, 93, 2, 233-250 (2018) · Zbl 1398.34025 · doi:10.1007/s11071-018-4188-z
[43] Zhang, X.; Niu, P.; Ma, Y.; Wei, Y.; Li, G., Global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition, Neural Networks, 94, 7, 67-75 (2017) · Zbl 1437.93101 · doi:10.1016/j.neunet.2017.06.010
[44] Zhao, D.; Wang, Z.; Wei, G.; Liu, X., Nonfragile \(####\) state estimation for recurrent neural networks with time-varying delays: On proportional-integral observer design, IEEE Transactions on Neural Networks and Learning Systems, 32, 8, 3553-3565 (2021) · doi:10.1109/TNNLS.2020.3015376
[45] Zhao, Z.; Wang, Z.; Zou, L.; Guo, G., Finite-time state estimation for delayed neural networks with redundant delayed channels, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51, 1, 441-451 (2021) · doi:10.1109/TSMC.2018.2874508
[46] Zhou, X.; Cheng, J.; Cao, J.; Ragulskis, M., Asynchronous dissipative filtering for nonhomogeneous Markov switching neural networks with variable packet dropouts, Neural Networks, 130, 3, 229-237 (2020) · Zbl 1478.93701 · doi:10.1016/j.neunet.2020.07.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.