×

Weakly reversible CF-decompositions of chemical kinetic systems. (English) Zbl 1492.92164

Summary: This paper studies chemical kinetic systems which decompose into weakly reversible complex factorizable (CF) systems. Among power law kinetic systems, CF systems (denoted as PL-RDK systems) are those where branching reactions of a reactant complex have identical rows in the kinetic order matrix. Mass action and generalized mass action systems (GMAS) are well-known examples. Schmitz’s global carbon cycle model is a previously studied non-complex factorizable (NF) power law system (denoted as PL-NDK). We derive novel conditions for the existence of weakly reversible CF-decompositions and present an algorithm for verifying these conditions. We discuss methods for identifying independent decompositions, i.e., those where the stoichiometric subspaces of the subnetworks form a direct sum, as such decompositions relate positive equilibria sets of the subnetworks to that of the whole network. We then use the results to determine the positive equilibria sets of PL-NDK systems which admit an independent weakly reversible decomposition into PL-RDK systems of PLP type, i.e., the positive equilibria are log-parametrized, which is a broad generalization of a deficiency zero theorem of N. T. Fortun et al. [MATCH Commun. Math. Comput. Chem. 81, No. 3, 621–638 (2019; Zbl 1471.92478)].

MSC:

92E20 Classical flows, reactions, etc. in chemistry

Citations:

Zbl 1471.92478

Software:

crntwin

References:

[1] Arceo, C.; Jose, E.; Marin-Sanguino, A.; Mendoza, E., Chemical reaction network approaches to biochemical systems theory, Math. Biosci., 269, 135-152 (2015) · Zbl 1351.92016 · doi:10.1016/j.mbs.2015.08.022
[2] Arceo, CP; Jose, EC; Lao, AR; Mendoza, ER, Reaction networks and kinetics of biochemical systems, Math. Biosci., 283, 13-29 (2017) · Zbl 1366.92054 · doi:10.1016/j.mbs.2016.10.004
[3] Arceo, CP; Jose, EC; Lao, AR; Mendoza, ER, Reactant subspaces and kinetics of chemical reaction networks, J. Math. Chem., 56, 395-422 (2018) · Zbl 1385.92060 · doi:10.1007/s10910-017-0809-x
[4] J. Bang-Jensen, G. Gutin, in Digraphs Theory (Springer Monographs in Mathematics, Springer-Verlag, London, Algorithms and Applications, 2009) · Zbl 1170.05002
[5] A. Bondy, U.S.R. Murty, in Graph Theory, (Graduate Texts in Mathematics, Springer-Verlag, London, 2008) · Zbl 1134.05001
[6] B. Boros, On the Positive Steady States of Deficiency One Mass Action Systems, PhD thesis, Eötvös Loránd University (2013)
[7] Farinas, HF; Mendoza, ER; Lao, AR, Chemical reaction network decompositions and realizations of S-systems, Philipp. Sci. Lett., 14, 147-157 (2021)
[8] Feinberg, M., Chemical reaction network structure and the stability of complex isothermal reactors I: the deficiency zero and deficiency one theorems, Chem. Eng. Sci., 42, 2229-2268 (1987) · doi:10.1016/0009-2509(87)80099-4
[9] M. Feinberg, Lectures on chemical reaction networks, University of Wisconsin (1979). Available at https://crnt.osu.edu/LecturesOnReactionNetworks
[10] Feinberg, M., The existence and uniqueness of steady states for a class of chemical reaction networks, Arch. Ration. Mech. Anal., 132, 311-370 (1995) · Zbl 0853.92024 · doi:10.1007/BF00375614
[11] Fontanil, LL; Mendoza, ER, Common complexes of decompositions and equilibria of chemical kinetic systems, MATCH Commun. Math. Comput. Chem., 87, 329-366 (2022) · Zbl 1505.92310 · doi:10.46793/match.87-2.329F
[12] Fontanil, LL; Mendoza, ER; Fortun, NT, A computational approach to concentration robustness in power law systems of Shinar-Feinberg type, MATCH Commun. Math. Comput. Chem., 86, 489-516 (2021) · Zbl 1474.92182
[13] Fortun, NT; Mendoza, ER, Absolute concentration robustness in power law kinetic systems, MATCH Commun. Math. Comput. Chem., 85, 669-691 (2021) · Zbl 1474.92183
[14] Fortun, N.; Lao, A.; Razon, L.; Mendoza, E., A deficiency zero theorem for a class of power-law kinetic systems with non-reactant-determined interactions, MATCH Commun. Math. Comput. Chem., 81, 621-638 (2019) · Zbl 1471.92478
[15] Gross, E.; Harrington, H.; Meshkat, N.; Shiu, A., Joining and decomposing reaction networks, J. Math. Biol., 80, 1683-1731 (2020) · Zbl 1439.13080 · doi:10.1007/s00285-020-01477-y
[16] B.S. Hernandez, D.A. Amistas, R.J.L. De la Cruz, L.L. Fontanil, A.A. de los Reyes V, E.R. Mendoza, Independent, Incidence Independent and Weakly Reversible Decompositions of Chemical Reaction Networks, MATCH Commun. Math. Comput. Chem. 87, 367-396 (2021) · Zbl 1505.92312
[17] Hernandez, BS; Mendoza, ER, Positive equilibria of Hill-type kinetic systems, J. Math. Chem., 59, 840-870 (2021) · Zbl 1466.92303 · doi:10.1007/s10910-021-01230-w
[18] B.S. Hernandez, E.R. Mendoza, A.A. de los Reyes V, A computational approach to multistationarity of power-law kinetic systems. J. Math. Chem. 58, 56-87 (2020) · Zbl 1432.92044
[19] B.S. Hernandez, E.R. Mendoza, A. A. de los Reyes V, Fundamental decompositions and multistationarity of power-law kinetic systems, MATCH Commun. Math. Comput. Chem. 83, 403-434 (2020) · Zbl 1472.92355
[20] Hernandez, BS; De la Cruz, RJL, Independent decompositions of chemical reaction networks, Bull. Math. Biol., 83, 76 (2021) · Zbl 1467.92256 · doi:10.1007/s11538-021-00906-3
[21] Horn, F.; Jackson, R., General mass action kinetics, Arch. Ration. Mech. Anal., 47, 81-116 (1972) · doi:10.1007/BF00251225
[22] H. Ji, P. Ellison, D. Knight, M. Feinberg, The Chemical Reaction Network Toolbox Software, Version 2.35, https://crnt.osu.edu/CRNTWin (2021)
[23] D.M. Magpantay, B.S. Hernandez, A.A. de los Reyes V, E.R. Mendoza, E.G. Nocon, A computational approach to multistationarity in poly-PL kinetic systems, MATCH Commun. Math. Comput. Chem. 85, 605-634 (2021) · Zbl 1474.92185
[24] Lao, AR; Lubenia, PVN; Magpantay, DM; Mendoza, ER, Concentration robustness in LP kinetic systems, MATCH Commun. Math. Comput. Chem., 88, 29-66 (2022) · Zbl 1496.92137 · doi:10.46793/match.88-1.029L
[25] S. Müller, G. Regensburger. Generalized Mass Action Systems and Positive Solutions of Polynomial Equations with Real and Symbolic Exponents. In: Proceedings of CASC 2014, (eds. V.P. Gerdt, W. Koepf, W.M. Seiler, E.H. Vorozhtsov), Lecture Notes in Comput. Sci. 8660, pp. 302-323 (2014) · Zbl 1421.92043
[26] Nazareno, AL; Eclarin, RPL; Mendoza, ER; Lao, AR, Linear conjugacy of chemical kinetic systems, Math. Biosci. Eng., 16, 8322-8355 (2019) · Zbl 1478.92266 · doi:10.3934/mbe.2019421
[27] Schmitz, R., The Earth’s carbon cycle: chemical engineering course material, Chem. Eng. Educ., 36, 296-309 (2002)
[28] Talabis, DASJ; Arceo, CP; Mendoza, ER, Positive equilibria of a class of power law kinetics, J. Math. Chem., 56, 358-394 (2018) · Zbl 1385.92063 · doi:10.1007/s10910-017-0804-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.