×

Designing of Morlet wavelet as a neural network for a novel prevention category in the HIV system. (English) Zbl 1492.92111

Summary: The aim of this work is to present a design of Morlet wavelet neural network (MWNN) for solving a novel prevention category (P) in the HIV system, known as HIPV mathematical model. The numerical performance of the novel HIPV mathematical model will be observed by exploiting the MWNN that works through the optimization procedures of global/local via “genetic algorithm” (GA) and local search “interior-point algorithm” (IPA), i.e. MWNN-GA-IPA. An error function using the differential HIPV mathematical model and its initial conditions is presented and optimized by the MWNN-GA-IPA. The obtained results have been compared with the Adams method to check the competence of the MWNN-GA-IPA. For the reliability and stability of the scheme, the performance using different statistical operators has been performed based on the multiple independent trials to solve the novel HIPV mathematical model.

MSC:

92D30 Epidemiology
92-10 Mathematical modeling or simulation for problems pertaining to biology

Software:

FORCES NLP
Full Text: DOI

References:

[1] Umar, M., Sabir, Z., Raja, M. A. Z., Shoaib, M., Gupta, M. and Sánchez, Y. G., A stochastic intelligent computing with neuro-evolution heuristics for nonlinear SITR system of novel COVID-19 dynamics, Symmetry12(10) (2020) 1628.
[2] Umar, M., Sabir, Z., Raja, M. A. Z. and Sánchez, Y. G., A stochastic numerical computing heuristic of SIR nonlinear model based on dengue fever, Results Phys.19 (2020) 103585.
[3] Umar, M., Sabir, Z., Amin, F., Guirao, J. L. and Raja, M. A. Z., Stochastic numerical technique for solving HIV infection model of CD4+ T cells, Eur. Phys. J. Plus135(5) (2020) 403.
[4] Wang, W. and Ma, W., Travelling wave solutions for a nonlocal dispersal HIV infection dynamical model, J. Math. Anal. Appl.457(1) (2018) 868-889. · Zbl 1370.93057
[5] Khan, A., Gómez-Aguilar, J. F., Khan, T. S. and Khan, H., Stability analysis and numerical solutions of fractional order HIV/AIDS model, Chaos Solitons Fract.122 (2019) 119-128. · Zbl 1448.92307
[6] Jiang, D., Liu, Q., Shi, N., Hayat, T., Alsaedi, A. and Xia, P., Dynamics of a stochastic HIV-1 infection model with logistic growth, Phys. A Stat. Mech. Appl.469 (2017) 706-717. · Zbl 1400.92502
[7] Naik, P. A., Zu, J. and Owolabi, K. M., Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control, Chaos Solitons Fract.138 (2020) 109826. · Zbl 1490.37112
[8] Arshad, S., Baleanu, D., Bu, W. and Tang, Y., Effects of HIV infection on CD4+ T-cell population based on a fractional-order model, Adv. Differ. Equ.2017(1) (2017) 1-14. · Zbl 1422.92141
[9] Elaiw, A. M., Raezah, A. A. and Azoz, S. A., Stability of delayed HIV dynamics models with two latent reservoirs and immune impairment, Adv. Differ. Equ.2018(1) (2018) 1-25. · Zbl 1448.92127
[10] Zhang, L., Herrera, C., Coburn, J., Olejniczak, N., Ziprin, P., Kaplan, D. L. and LiWang, P. J., Stabilization and sustained release of HIV inhibitors by encapsulation in silk fibroin disks, ACS Biomater. Sci. Eng.3(8) (2017) 1654-1665.
[11] Lin, J., Xu, R. and Tian, X., Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, intracellular delay, and humoral immunity, Appl. Math. Comput.315 (2017) 516-530. · Zbl 1426.92078
[12] Thirumalai, S., Seshadri, R. and Yüzbaşı, Ş., On the solution of the Human Immunodeficiency Virus (HIV) infection model using spectral collocation method, Int. J. Biomath.14(2) (2021) 2050074. · Zbl 1461.92020
[13] Elaiw, A. M. and AlShamrani, N. H., Modeling and stability analysis of HIV/HTLV-I co-infection, Int. J. Biomath.14(5) (2021) 2150030. · Zbl 1473.92025
[14] Xie, Z. and Liu, X., Global dynamics in an age-structured HIV model with humoral immunity, Int. J. Biomath.14(6) (2021) 2150047. · Zbl 1475.92057
[15] Monfared, Z., Omidi, F. and Raeini, Y. Qaseminezhad, Investigating the effect of pyroptosis on the slow CD4+ T cell depletion in HIV-1 infection, by dynamical analysis of its discontinuous mathematical model, Int. J. Biomath.13(6) (2020) 2050041. · Zbl 1461.92018
[16] Singh, H., Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells, Chaos Solitons Fract.146 (2021) 110868.
[17] Tamilalagan, P., Karthiga, S. and Manivannan, P., Dynamics of fractional order HIV infection model with antibody and cytotoxic T-lymphocyte immune responses, J. Comput. Appl. Math.382 (2021) 113064. · Zbl 1450.34035
[18] Guo, W. and Zhang, Q., Explicit numerical approximation for an impulsive stochastic age-structured HIV infection model with Markovian switching, Math. Comput. Simul.182 (2021) 86-115. · Zbl 1524.60183
[19] Viriyapong, R. and Sawangthit, S., Stability analysis and optimal control of an intracellular HIV infection model with antiretroviral treatment, J. Biol. Syst.29(1) (2021) 193-218. · Zbl 1469.92068
[20] Chen, S. B., Rajaee, F., Yousefpour, A., Alcaraz, R., Chu, Y. M., Gómez-Aguilar, J. F., Bekiros, S., Aly, A. A. and Jahanshahi, H., Antiretroviral therapy of HIV infection using a novel optimal type-2 fuzzy control strategy, Alex. Eng. J.60(1) (2021) 1545-1555.
[21] Sabir, Z., Manzar, M. A., Raja, M. A. Z., Sheraz, M. and Wazwaz, A. M., Neuro-heuristics for nonlinear singular Thomas-Fermi systems, Appl. Soft Comput.Computing65 (2018) 152-169.
[22] Bilal, A., Sun, G., Mazhar, S. and Junjie, Z., Neuro-optimized numerical treatment of HIV infection model, Int. J. Biomath.14(5) (2021) 2150033. · Zbl 1475.92149
[23] Raja, M. A. Z., Asma, K. and Aslam, M. S., Bio-inspired computational heuristics to study models of HIV infection of CD4+ T-cell, Int. J. Biomath.11(02) (2018) 1850019. · Zbl 1384.92006
[24] Umar, M., Sabir, Z. and Raja, M. A. Z., Intelligent computing for numerical treatment of nonlinear prey-predator models, Appl. Soft Comput.80 (2019) 506-524.
[25] Faisal, F., Shoaib, M. and Raja, M. A. Z., A new heuristic computational solver for nonlinear singular Thomas-Fermi system using evolutionary optimized cubic splines, Eur. Phys. J. Plus135(1) (2020) 1-29.
[26] Sabir, Z., Raja, M. A. Z., Arbi, A., Altamirano, G. C. and Cao, J., Neuro-swarms intelligent computing using Gudermannian kernel for solving a class of second order Lane-Emden singular nonlinear model, AIMS Math.6(3) (2021) 2468-2485. · Zbl 1525.65072
[27] Umar, M., Raja, M. A. Z., Sabir, Z., Alwabli, A. S. and Shoaib, M., A stochastic computational intelligent solver for numerical treatment of mosquito dispersal model in a heterogeneous environment, Eur. Phys. J. Plus135(7) (2020) 1-23.
[28] Naz, S., Raja, M. A. Z., Mehmood, A., Zameer, A. and Shoaib, M., Neuro-intelligent networks for Bouc-Wen hysteresis model for piezostage actuator, Eur. Phys. J. Plus136(4) (2021) 1-20.
[29] Sabir, Z., Raja, M. A. Z., Umar, M. and Shoaib, M., Neuro-swarm intelligent computing to solve the second-order singular functional differential model, Eur. Phys. J. Plus135(6) (2020) 1-19.
[30] Sabir, Z., Baleanu, D., Shoaib, M. and Raja, M. A. Z., Design of stochastic numerical solver for the solution of singular three-point second-order boundary value problems, Neural Comput. Appl.33(7) (2021) 2427-2443.
[31] Almalki, M. M., Alaidarous, E. S., Raja, M. A. Z., Maturi, D. A. and Shoaib, M., Optimization through the Levenberg — Marquardt backpropagation method for a magnetohydrodynamic squeezing flow system, Coatings11(7) (2021) 779.
[32] Sabir, Z., Raja, M. A. Z., Shoaib, M. and Aguilar, J. G., FMNEICS: Fractional Meyer neuro-evolution-based intelligent computing solver for doubly singular multi-fractional order Lane-Emden system, Comput. Appl. Math.39(4) (2020) 1-18. · Zbl 1476.65157
[33] Raja, M. A. Z., Umar, M., Sabir, Z., Khan, J. A. and Baleanu, D., A new stochastic computing paradigm for the dynamics of nonlinear singular heat conduction model of the human head, Eur. Phys. J. Plus133(9) (2018) 1-21.
[34] Majeed, K., Masood, Z., Samar, R. and Raja, M. A. Z., A genetic algorithm optimized Morlet wavelet artificial neural network to study the dynamics of nonlinear Troesch’s system, Appl. Soft Comput.56 (2017) 420-435.
[35] Sabir, Z., Nisar, K., Raja, M. A. Z., Ibrahim, A. A. B. A., Rodrigues, J. J., Al-Basyouni, K. S., Mahmoud, S. R. and Rawat, D. B., Design of Morlet wavelet neural network for solving the higher order singular nonlinear differential equations, Alex. Eng. J.60(6) (2021) 5935-5947.
[36] Tao, Z., Huiling, L., Wenwen, W. and Xia, Y., GA-SVM based feature selection and parameter optimization in hospitalization expense modeling, Appl. Soft Comput.75 (2019) 323-332.
[37] Mehmood, A., Zameer, A., Ling, S. H., ur Rehman, A. and Raja, M. A. Z., Integrated computational intelligent paradigm for nonlinear electric circuit models using neural networks, genetic algorithms and sequential quadratic programming, Neural Comput. Appl.32(14) (2020) 10337-10357.
[38] Sayed, S., Nassef, M., Badr, A. and Farag, I., A nested genetic algorithm for feature selection in high-dimensional cancer microarray datasets, Expert Syst. Appl.121 (2019) 233-243.
[39] Sabir, Z., Raja, M. A. Z., Guirao, J. L. and Shoaib, M., Integrated intelligent computing with neuro-swarming solver for multi-singular fourth-order nonlinear Emden-Fowler equation, Comput. Appl. Math.39(4) (2020) 1-18. · Zbl 1476.37108
[40] Hemanth, D. J. and Anitha, J., Modified genetic algorithm approaches for classification of abnormal magnetic resonance brain tumour images, Appl. Soft Comput.75 (2019) 21-28.
[41] Mohammed, M. A., Ghani, M. K. A., Hamed, R. I., Mostafa, S. A., Ahmad, M. S. and Ibrahim, D. A., Solving vehicle routing problem by using improved genetic algorithm for optimal solution, J. Comput. Sci.21 (2017) 255-262.
[42] Jiang, Y., Wu, P., Zeng, J., Zhang, Y., Zhang, Y. and Wang, S., Multi-parameter and multi-objective optimisation of articulated monorail vehicle system dynamics using genetic algorithm, Veh. Syst. Dyn.58(1) (2020) 74-91.
[43] Yang, Y., Yang, B., Wang, S., Liu, F., Wang, Y. and Shu, X., A dynamic ant-colony genetic algorithm for cloud service composition optimization, Int. J. Adv. Manuf. Syst.102(1-4) (2019) 355-368.
[44] Dahl, J. and Andersen, E. D., A primal-dual interior-point algorithm for nonsymmetric exponential-cone optimization, Math. Program. (2021), https://doi.org/10.1007/s10107-021-01631-4. · Zbl 1494.90128
[45] Umar, M., Sabir, Z., Raja, M. A. Z., Amin, F., Saeed, T. and Guerrero-Sanchez, Y., Integrated neuro-swarm heuristic with interior-point for nonlinear SITR model for dynamics of novel COVID-19, Alex. Eng. J.60(3) (2021) 2811-2824.
[46] Liu, C. H., Shang, Y. L. and Han, P., A new infeasible-interior-point algorithm for linear programming over symmetric cones, Acta Math. Appl. Sin.33(3) (2017) 771-788. · Zbl 1407.90347
[47] Bleyer, J., Advances in the simulation of viscoplastic fluid flows using interior-point methods, Comput. Methods Appl. Mech. Eng.330 (2018) 368-394. · Zbl 1439.76006
[48] Zanelli, A., Domahidi, A., Jerez, J. and Morari, M., FORCES NLP: An efficient implementation of interior-point methods for multistage nonlinear nonconvex programs, Int. J. Control93(1) (2020) 13-29. · Zbl 1430.93069
[49] Raja, M. A. Z., Shah, F. H., Alaidarous, E. S. and Syam, M. I., Design of bio-inspired heuristic technique integrated with interior-point algorithm to analyze the dynamics of heartbeat model, Appl. Soft Comput.52 (2017) 605-629.
[50] Sabir, Z., Khalique, C. M., Raja, M. A. Z. and Baleanu, D., Evolutionary computing for nonlinear singular boundary value problems using neural network, genetic algorithm and active-set algorithm, Eur. Phys. J. Plus136(2) (2021) 1-19.
[51] Zameer, A., Majeed, M., Mirza, S. M., Raja, M. A. Z., Khan, A. and Mirza, N. M., Bio-inspired heuristics for layer thickness optimization in multilayer piezoelectric transducer for broadband structures, Soft Comput.23(10) (2019) 3449-3463.
[52] Sabir, Z., Raja, M. A. Z., Kamal, A., Guirao, J. L., Le, D. N., Saeed, T. and Salama, M., Neuro-Swarm heuristic using interior-point algorithm to solve a third kind of multi-singular nonlinear system, Math. Biosci. Eng.18(5) (2021) 5285-5308. · Zbl 1505.65234
[53] Raja, M. A. Z., Ahmed, U., Zameer, A., Kiani, A. K. and Chaudhary, N. I., Bio-inspired heuristics hybrid with sequential quadratic programming and interior-point methods for reliable treatment of economic load dispatch problem, Neural Comput. Appl.31(1) (2019) 447-475.
[54] Sabir, Z., Raja, M. A. Z., Wahab, H. A., Altamirano, G. C., Zhang, Y. D. and Le, D. N., Integrated intelligence of neuro-evolution with sequential quadratic programming for second-order Lane-Emden pantograph models, Math. Comput. Simul.188 (2021) 87-101. · Zbl 1540.65447
[55] Raja, M. A. Z., Mehmood, A., Niazi, S. A. and Shah, S. M., Computational intelligence methodology for the analysis of RC circuit modelled with nonlinear differential order system, Neural Comput. Appl.30(6) (2018) 1905-1924.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.