×

Quasi-contingent derivatives and studies of higher-orders in nonsmooth optimization. (English) Zbl 1492.90192

Summary: We consider higher-order conditions and sensitivity analysis for solutions to equilibrium problems. The conditions for solutions are in terms of quasi-contingent derivatives and involve higher-order complementarity slackness for both the objective and the constraints and under Hölder metric subregularity assumptions. For sensitivity analysis, a formula of this type of derivative of the solution map to a parametric equilibrium problem is established in terms of the same types of derivatives of the data of the problem. Here, the concepts of a quasi-contingent derivative and critical directions are new. We consider open-cone solutions and proper solutions. We also study an important and typical special case: weak solutions of a vector minimization problem with mixed constraints. The results are significantly new and improve recent corresponding results in many aspects.

MSC:

90C46 Optimality conditions and duality in mathematical programming
90C31 Sensitivity, stability, parametric optimization
90C30 Nonlinear programming
49J52 Nonsmooth analysis
49J53 Set-valued and variational analysis
Full Text: DOI

References:

[1] Anh, NLH; Khanh, PQ, Variational sets of perturbation maps and applications to sensitivity analysis for constrained vector optimization, J. Optim. Theory Appl., 158, 2, 363-384 (2013) · Zbl 1272.90076
[2] Anh, NLH; Khanh, PQ, Higher-order conditions for proper efficiency in nonsmooth vector optimization using radial sets and radial derivatives, J. Glob. Optim., 58, 4, 693-709 (2014) · Zbl 1326.90075
[3] Anh, N.L.H., Khanh, P.Q.: Calculus and applications of Studniarski’s derivative to sensitivity and implicit function theorems. Control Cybern. 43(1), 33-57 (2014) · Zbl 1318.49028
[4] Anh, NLH; Khanh, PQ; Tung, LT, Higher-order radial derivatives and optimality conditions in nonsmooth vector optimization, Nonlinear Anal. TMA, 74, 18, 7365-7379 (2011) · Zbl 1251.90386
[5] Anitescu, M., Degenerate nonlinear programming with a quadratic growth condition, SIAM J. Optim., 10, 4, 1116-1135 (2000) · Zbl 0994.65073
[6] Aubin, JP; Frankowska, H., Set-Valued Analysis (1990), Boston: Birkhäuser, Boston · Zbl 0713.49021
[7] Bednarczuk, E.; Song, W., Contingent epiderivative and its applications to set-valued optimization, Control Cybern., 24, 375-386 (1998) · Zbl 0951.49022
[8] Bonnans, JF; Shapiro, A., Perturbation Analysis of Optimization Problems (2000), New York: Springer, New York · Zbl 0966.49001
[9] Cominetti, R., Metric regularity, tangent sets, and second-order optimality conditions, Appl. Math. Optim., 21, 1, 265-287 (1990) · Zbl 0692.49018
[10] de Araujo, AP; Monteiro, PK, On programming when the positive cone has an empty interior, J. Optim. Theory Appl., 67, 2, 395-410 (1990) · Zbl 0696.90044
[11] Diem, HTH; Khanh, PQ; Tung, LT, On higher-order sensitivity analysis in nonsmooth vector optimization, J. Optim. Theory Appl., 162, 2, 463-488 (2014) · Zbl 1323.90061
[12] Durea, M.; Dutta, J.; Tammer, C., Bounded sets of Lagrange multipliers for vector optimization problems in infinite dimension, J. Math. Anal. Appl., 348, 2, 589-606 (2008) · Zbl 1154.90012
[13] Gauvin, J., A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming, Math. Program., 12, 1, 136-138 (1977) · Zbl 0354.90075
[14] Ginchev, I., Higher order optimality conditions in nonsmooth optimization, Optimization, 51, 1, 47-72 (2002) · Zbl 1011.49014
[15] Gollan, B.: Higher order necessary conditions for an abstract optimization problem. In: Mathematics Programming on Studying, pp. 69-76. Springer, Berlin (1981) · Zbl 0449.90099
[16] Gong, XH, Scalarization and optimality conditions for vector equilibrium problems, Nonlinear Anal., 73, 11, 3598-3612 (2010) · Zbl 1197.49011
[17] Götz, A.; Jahn, J., The Lagrange multiplier rule in set-valued optimization, SIAM J. Optim., 10, 2, 331-344 (2000) · Zbl 1029.90065
[18] Ha, T.X.D.: Optimality conditions for several types of efficient solutions of set-valued optimization problems. in: Pardalos, P., Rassis, Th.M., Khan, A.A. (Eds.) Nonlinear Analysis and Variational Problems, pp. 305-324 (Chapter 21). Springer (2009) · Zbl 1184.49025
[19] Hoffmann, KH; Kornstaedt, HJ, Higher-order necessary conditions in abstract mathematical programming, J. Optim. Theory Appl., 26, 4, 533-568 (1978) · Zbl 0373.90066
[20] Ioffe, AD, Nonlinear regularity models, Math. Program., 139, 1-2, 223-242 (2013) · Zbl 1275.47106
[21] Ivanov, VI, Higher order optimality conditions for inequality-constrained problems, Appl. Anal., 92, 12, 2600-2617 (2013) · Zbl 1284.49030
[22] Kawasaki, H., An envelope-like effect of infinitely many inequality constraints on second-order necessary conditions for minimization problems, Math. Program., 41, 1-3, 73-96 (1988) · Zbl 0661.49012
[23] Khan, AA; Tammer, C.; Zălinescu, C., Set-Valued Optimization (2015), Berlin: Springer, Berlin · Zbl 1308.49004
[24] Khanh, PQ, Proper solutions of vector optimization problems, J. Optim. Theory Appl., 74, 1, 105-130 (1992) · Zbl 0795.90057
[25] Khanh, PQ; Kruger, AY; Thao, NH, An induction theorem and nonlinear regularity models, SIAM J. Optim., 25, 4, 2561-2588 (2015) · Zbl 1331.47073
[26] Khanh, PQ; Tuan, ND, Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimization, J. Optim. Theory Appl., 139, 2, 243-261 (2008) · Zbl 1189.90138
[27] Khanh, PQ; Tuan, ND, Second-order optimality conditions with the envelope-like effect in nonsmooth multiobjective mathematical programming II: optimality conditions, J. Math. Anal. Appl., 403, 2, 703-714 (2013) · Zbl 1291.90225
[28] Khanh, PQ; Tung, LT, First and second-order optimality conditions using approximations for vector equilibrium problems with constraints, J. Glob. Optim., 55, 4, 901-920 (2013) · Zbl 1287.90078
[29] Khanh, PQ; Tung, NM, Optimality conditions and duality for nonsmooth vector equilibrium problems with constraints, Optimization, 64, 7, 1547-1575 (2014) · Zbl 1337.90081
[30] Khanh, PQ; Tung, NM, Second-order optimality conditions with the envelope-like effect for set-valued optimization, J. Optim. Theory Appl., 167, 1, 68-90 (2015) · Zbl 1327.90287
[31] Khanh, PQ; Tung, NM, Existence and boundedness of second-order Karush-Kuhn-Tucker multipliers for set-valued optimization with variable ordering structures, Taiw. J. Math., 22, 4, 1001-1029 (2018) · Zbl 1401.90225
[32] Khanh, PQ; Tung, NM, Higher-order Karush-Kuhn-Tucker conditions in nonsmooth optimization, SIAM J. Optim., 28, 1, 820-848 (2018) · Zbl 1437.90145
[33] Ledzewicz, U.; Schättler, H., High-order approximations and generalized necessary conditions for optimality, SIAM J. Control Optim., 37, 1, 33-53 (1998) · Zbl 0941.49016
[34] Li, G.; Mordukhovich, BS, Hölder metric subregularity with applications to proximal point method, SIAM J. Optim., 22, 4, 1655-1684 (2012) · Zbl 1260.49069
[35] Li, SJ; Li, MH, Sensitivity analysis of parametric weak vector equilibrium problems, J. Math. Anal. Appl., 380, 1, 354-362 (2011) · Zbl 1216.49022
[36] Li, SJ; Teo, KL; Yang, XQ, Higher-order optimality conditions for set-valued optimization, J. Optim. Theory Appl., 137, 3, 533-553 (2008) · Zbl 1149.49020
[37] Luu, DV, Higher-order efficiency conditions via higher-order tangent cones, Numer. Funct. Anal. Appl., 35, 1, 68-84 (2013) · Zbl 1321.90149
[38] Luu, DV, Second-order necessary efficiency conditions for nonsmooth vector equilibrium problems, J. Glob. Optim., 70, 2, 437-453 (2018) · Zbl 1405.90120
[39] Ma, BC; Gong, XH, Optimality conditions for vector equilibrium problems in normed spaces, Optimization, 60, 12, 1441-1455 (2011) · Zbl 1258.90084
[40] Makarov, EK; Rachkovski, NN, Unified representation of proper efficiency by means of dilating cones, J. Optim. Theory Appl., 101, 1, 141-165 (1999) · Zbl 0945.90056
[41] Mordukhovich, BS, Variational Analysis and Generalized Differentiation I: Basic theory, II: Applications (2006), Berlin: Springer, Berlin
[42] Mordukhovich, BS; Ouyang, W., Higher-order metric subregularity and its applications, J. Glob. Optim., 63, 4, 777-795 (2015) · Zbl 1329.49029
[43] Páles, Z.; Zeidan, VM, Nonsmooth optimum problems with constraints, SIAM J. Control Optim., 32, 5, 1476-1502 (1994) · Zbl 0821.49020
[44] Penot, JP, Second-order conditions for optimization problems with constraints, SIAM J. Control Optim., 37, 1, 303-318 (1998) · Zbl 0917.49023
[45] Penot, JP, Higher-order optimality conditions and higher-order tangent sets, SIAM J. Optim., 27, 4, 2508-2527 (2017) · Zbl 1381.49024
[46] Robinson, S.M.: Generalized equations and their solutions, I: Basic theory. In: Mathematics Programming Studies, pp. 128-141. Springer, Berlin (1979) · Zbl 0404.90093
[47] Rockafellar, RT; Wets, RJB, Variational Analysis (1998), Berlin: Springer, Berlin · Zbl 0888.49001
[48] Sawaragi, Y.; Nakayama, H.; Tanino, T., Theory of Multiobjective Optimization (1985), New York: Academic Press, New York · Zbl 0566.90053
[49] Studniarski, M., Necessary and sufficient conditions for isolated local minima of nonsmooth functions, SIAM J. Control Optim., 24, 5, 1044-1049 (1986) · Zbl 0604.49017
[50] Studniarski, M., Higher-order necessary optimality conditions in terms of Neustadt derivatives, Nonlinear Anal., 47, 1, 363-373 (2001) · Zbl 1042.90641
[51] Thibault, L., Tangent cones and quasi-interiorly tangent cones to multifunctions, Trans. Am. Math. Soc., 277, 2, 601-621 (1983) · Zbl 0527.90088
[52] Zheng, XY; Ng, KF, The Fermat rule for multifunctions on Banach spaces, Math. Program., 104, 1, 69-90 (2005) · Zbl 1099.49020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.