×

Testing modified gravity theory (MOG) with type Ia supernovae, cosmic chronometers and baryon acoustic oscillations. (English) Zbl 1492.85020

MSC:

85A15 Galactic and stellar structure
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76Q05 Hydro- and aero-acoustics
81V35 Nuclear physics

References:

[1] J.H. Oort, 1932 The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems Bull Astron. Inst. Neth.6 249 · Zbl 0005.12805
[2] F. Zwicky, 1937 On the Masses of Nebulae and of Clusters of Nebulae, https://doi.org/10.1086/143864 Astrophys. J.86 217 · Zbl 0017.28802 · doi:10.1086/143864
[3] V.C. Rubin, W.K. Ford Jr. and N. Thonnard, 1978 Extended rotation curves of high-luminosity spiral galaxies. IV. Systematic dynamical properties, Sa through Sc, https://doi.org/10.1086/182804 Astrophys. J. Lett.225 L107 · doi:10.1086/182804
[4] V.C. Rubin, W.K. Ford Jr. and N. Thonnard, 1980 Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R = 4 kpc) to UGC 2885 (R = 122 kpc), https://doi.org/10.1086/158003 Astrophys. J.238 471 · doi:10.1086/158003
[5] J. Tyson, G.P. Kochanski and I.P. Dell’Antonio, 1998 Detailed mass map of CL0024+1654 from strong lensing, https://doi.org/10.1086/311314 Astrophys. J. Lett.498L107 [astro-ph/9801193] · doi:10.1086/311314
[6] M. Hasselfield et al., 2013 The Atacama Cosmology Telescope: Sunyaev-Zel’dovich selected galaxyclusters at 148 GHz from three seasons of data J. Cosmol. Astropart. Phys.2013 07 008 [1301.0816]
[7] K. Osato, S. Flender, D. Nagai, M. Shirasaki and N. Yoshida, 2018 Investigating cluster astrophysics and cosmology with cross-correlation of the thermal Sunyaev-Zel’dovich effect and weak lensing, https://doi.org/10.1093/mnras/stx3215 Mon. Not. Roy. Astron. Soc.475 532 [1706.08972] · doi:10.1093/mnras/stx3215
[8] Planck collaboration, 2016 Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts, https://doi.org/10.1051/0004-6361/201525833 Astron. Astrophys.594 A24 [1502.01597] · doi:10.1051/0004-6361/201525833
[9] T. Sakamoto, M. Chiba and T.C. Beers, 2003 The Mass of the Milky Way: Limits from a newly assembled set of halo objects, https://doi.org/10.1051/0004-6361:20021499 Astron. Astrophys.397 899 [astro-ph/0210508] · doi:10.1051/0004-6361:20021499
[10] SDSS collaboration, 2008 The Milky Way’s Circular Velocity Curve to 60 kpc and an Estimate of the Dark Matter Halo Mass from Kinematics of ∼2400 SDSS Blue Horizontal Branch Stars, https://doi.org/10.1086/589500 Astrophys. J.684 1143 [0801.1232] · doi:10.1086/589500
[11] P.R. Kafle, S. Sharma, G.F. Lewis and J. Bland-Hawthorn, 2014 On the Shoulders of Giants: Properties of the Stellar Halo and the Milky Way Mass Distribution, https://doi.org/10.1088/0004-637X/794/1/59 Astrophys. J.794 59 [1408.1787] · doi:10.1088/0004-637X/794/1/59
[12] F. Iocco, M. Pato and G. Bertone, 2015 Evidence for dark matter in the inner Milky Way, https://doi.org/10.1038/nphys3237 Nature Phys.11 245 [1502.03821] · doi:10.1038/nphys3237
[13] D.M. Scolnic et al., 2018 The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, https://doi.org/10.3847/1538-4357/aab9bb Astrophys. J.859 101 [1710.00845] · doi:10.3847/1538-4357/aab9bb
[14] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, [1807.06209]
[15] A.J. Ross, L. Samushia, C. Howlett, W.J. Percival, A. Burden and M. Manera, 2015 The clustering of the SDSS DR7 main Galaxy sample — I. A 4 per cent distance measure at z = 0.15, https://doi.org/10.1093/mnras/stv154 Mon. Not. Roy. Astron. Soc.449 835 [1409.3242] · doi:10.1093/mnras/stv154
[16] BOSS collaboration, 2017 The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, https://doi.org/10.1093/mnras/stx721 Mon. Not. Roy. Astron. Soc.470 2617 [1607.03155] · doi:10.1093/mnras/stx721
[17] DES collaboration, 2019 Dark Energy Survey Year 1 Results: Measurement of the Baryon Acoustic Oscillation scale in the distribution of galaxies to redshift 1, https://doi.org/10.1093/mnras/sty3351 Mon. Not. Roy. Astron. Soc.483 4866 [1712.06209] · doi:10.1093/mnras/sty3351
[18] S.E. Nuza et al., 2013 The clustering of galaxies at z∼ 0.5 in the SDSS-III Data Release 9 BOSS-CMASS sample: a test for the LCDM cosmology, https://doi.org/10.1093/mnras/stt513 Mon. Not. Roy. Astron. Soc.432 743 [1202.6057] · doi:10.1093/mnras/stt513
[19] M. Schumann, 2019 Direct Detection of WIMP Dark Matter: Concepts and Status, https://doi.org/10.1088/1361-6471/ab2ea5 J. Phys. G46 103003 [1903.03026] · doi:10.1088/1361-6471/ab2ea5
[20] M. Milgrom, 1983 A Modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, https://doi.org/10.1086/161130 Astrophys. J.270 365 · doi:10.1086/161130
[21] J.D. Bekenstein, 2004 Relativistic gravitation theory for the MOND paradigm, https://doi.org/10.1103/PhysRevD.70.083509 Phys. Rev. D70 083509 [Erratum ibid 71 (2005) 069901] [astro-ph/0403694] · doi:10.1103/PhysRevD.70.083509
[22] D. Clowe et al., 2006 A direct empirical proof of the existence of dark matter, https://doi.org/10.1086/508162 Astrophys. J. Lett.648L109 [astro-ph/0608407] · doi:10.1086/508162
[23] J.W. Moffat, 2006 Scalar-tensor-vector gravity theory J. Cosmol. Astropart. Phys.2006 03 004 [gr-qc/0506021] · Zbl 1236.83047
[24] J.W. Moffat and V.T. Toth, 2008 Testing modified gravity with globular cluster velocity dispersions, https://doi.org/10.1086/587926 Astrophys. J.680 1158 [0708.1935] · doi:10.1086/587926
[25] J.W. Moffat and S. Rahvar, 2014 The MOG weak field approximation — II. Observational test of Chandra X-ray clusters, https://doi.org/10.1093/mnras/stu855 Mon. Not. Roy. Astron. Soc.441 3724 [1309.5077] · doi:10.1093/mnras/stu855
[26] J.W. Moffat and M.H. Zhoolideh Haghighi, 2017 Modified gravity (MOG) and the Abell 1689 cluster acceleration data, https://doi.org/10.1140/epjp/i2017-11684-4 Eur. Phys. J. Plus132 417 [1611.05382] · doi:10.1140/epjp/i2017-11684-4
[27] J.W. Moffat and S. Rahvar, 2013 The MOG weak field approximation and observational test of galaxy rotation curves, https://doi.org/10.1093/mnras/stt1670 Mon. Not. Roy. Astron. Soc.436 1439 [1306.6383] · doi:10.1093/mnras/stt1670
[28] M.H. Zhoolideh Haghighi and S. Rahvar, 2017 Testing MOG, Non-Local Gravity and MOND with rotation curves of dwarf galaxies, https://doi.org/10.1093/mnras/stx692 Mon. Not. Roy. Astron. Soc.468 4048 [1609.07851] · doi:10.1093/mnras/stx692
[29] C. Negrelli, M. Benito, S. Landau, F. Iocco and L. Kraiselburd, 2018 Testing modified gravity theory in the Milky Way, https://doi.org/10.1103/PhysRevD.98.104061 Phys. Rev. D98 104061 [1810.07200] · doi:10.1103/PhysRevD.98.104061
[30] D. Clowe et al., 2006 A direct empirical proof of the existence of dark matter, https://doi.org/10.1086/508162 Astrophys. J. Lett.648L109 [astro-ph/0608407] · doi:10.1086/508162
[31] J.R. Brownstein and J.W. Moffat, 2007 The Bullet Cluster 1E0657-558 evidence shows Modified Gravity in the absence of Dark Matter, https://doi.org/10.1111/j.1365-2966.2007.12275.x Mon. Not. Roy. Astron. Soc.382 29 [astro-ph/0702146] · doi:10.1111/j.1365-2966.2007.12275.x
[32] N.S. Israel and J.W. Moffat, 2018 The Train Wreck Cluster Abell 520 and the Bullet Cluster 1E0657-558 in a Generalized Theory of Gravitation, https://doi.org/10.3390/galaxies6020041 Galaxies6 41 [1606.09128] · doi:10.3390/galaxies6020041
[33] T.M. Nieuwenhuizen, A. Morandi and M. Limousin, 2018 Modified Gravity and its test on galaxy clusters, https://doi.org/10.1093/mnras/sty380 Mon. Not. Roy. Astron. Soc.476 3393 [1802.04891] · doi:10.1093/mnras/sty380
[34] S. Boran, S. Desai, E.O. Kahya and R.P. Woodard, 2018 GW170817 Falsifies Dark Matter Emulators, https://doi.org/10.1103/PhysRevD.97.041501 Phys. Rev. D97 041501 [1710.06168] · doi:10.1103/PhysRevD.97.041501
[35] M.A. Green, J.W. Moffat and V.T. Toth, 2018 Modified Gravity (MOG), the speed of gravitational radiation and the event GW170817/GRB170817A, https://doi.org/10.1016/j.physletb.2018.03.015 Phys. Lett. B780 300 [1710.11177] · Zbl 1390.83280 · doi:10.1016/j.physletb.2018.03.015
[36] Supernova Search Team collaboration, 1998 The High Z supernova search: Measuring cosmic deceleration and global curvature of the universe using type-IA supernovae, https://doi.org/10.1086/306308 Astrophys. J.507 46 [astro-ph/9805200] · doi:10.1086/306308
[37] S. Tsujikawa, 2011 Dark energy: investigation and modeling, in https://doi.org/10.1007/978-90-481-8685-3_8 Astrophysics and Space Science Library370 Springer, Dordrecht The Netherlands [1004.1493] · Zbl 1213.83011 · doi:10.1007/978-90-481-8685-3_8
[38] A. De Felice and S. Tsujikawa, 2010 f(R) theories, https://doi.org/10.12942/lrr-2010-3 Living Rev. Rel.13 3 [1002.4928] · Zbl 1215.83005 · doi:10.12942/lrr-2010-3
[39] J.W. Moffat and V.T. Toth, 2009 Fundamental parameter-free solutions in modified gravity, https://doi.org/10.1088/0264-9381/26/8/085002 Class. Quant. Grav.26 085002 [0712.1796] · Zbl 1161.83414 · doi:10.1088/0264-9381/26/8/085002
[40] J.W. Moffat and V.T. Toth, Modified Gravity: Cosmology without dark matter or Einstein’s cosmological constant, [0710.0364]
[41] J.W. Moffat and V.T. Toth, 2013 Cosmological observations in a modified theory of gravity (MOG), https://doi.org/10.3390/galaxies1010065 Galaxies1 65 [1104.2957] · doi:10.3390/galaxies1010065
[42] V.T. Toth, Cosmological consequences of Modified Gravity (MOG), in proceedings of the International Conference on Two Cosmological Models, Mexico City, Mexico, 17-19 November 2010, [1011.5174]
[43] S. Jamali and M. Roshan, 2016 The phase space analysis of modified gravity (MOG), https://doi.org/10.1140/epjc/s10052-016-4336-x Eur. Phys. J. C76 490 [1608.06251] · doi:10.1140/epjc/s10052-016-4336-x
[44] S. Jamali, M. Roshan and L. Amendola, 2020 Linear cosmological perturbations in Scalar-tensor-vector gravity, https://doi.org/10.1016/j.physletb.2020.135238 Phys. Lett. B802 135238 [1811.04445] · Zbl 1435.83129 · doi:10.1016/j.physletb.2020.135238
[45] R. Jimenez and A. Loeb, 2002 Constraining cosmological parameters based on relative galaxy ages, https://doi.org/10.1086/340549 Astrophys. J.573 37 [astro-ph/0106145] · doi:10.1086/340549
[46] J. Simon, L. Verde and R. Jimenez, 2005 Constraints on the redshift dependence of the dark energy potential, https://doi.org/10.1103/PhysRevD.71.123001 Phys. Rev. D71 123001 [astro-ph/0412269] · doi:10.1103/PhysRevD.71.123001
[47] R.G. Abraham et al., 2004 The Gemini Deep Deep Survey. 1. Introduction to the survey, catalogs and composite spectra, https://doi.org/10.1086/383557 Astron. J.127 2455 [astro-ph/0402436] · doi:10.1086/383557
[48] J. Dunlop et al., 1996 A 3.5-Gyr-old galaxy at redshift 1.55, https://doi.org/10.1038/381581a0 Nature381 581 · doi:10.1038/381581a0
[49] L.A. Nolan, J.S. Dunlop, R. Jimenez and A.F. Heavens, 2003 F stars, metallicity and the ages of red galaxies at z > 1, https://doi.org/10.1046/j.1365-8711.2003.06398.x Mon. Not. Roy. Astron. Soc.341 464 [astro-ph/0103450] · doi:10.1046/j.1365-8711.2003.06398.x
[50] H. Spinrad et al., 1997 LBDS 53W091: an old, red galaxy at z=1.552, https://doi.org/10.1086/304381 Astrophys. J.484 581 [astro-ph/9702233] · doi:10.1086/304381
[51] T. Treu, M. Stiavelli, S. Casertano, P. Moller and G. Bertin, 1999 The properties of field elliptical galaxies at intermediate redshift. I: empirical scaling laws, https://doi.org/10.1046/j.1365-8711.1999.02794.x Mon. Not. Roy. Astron. Soc.308 1037 [astro-ph/9904327] · doi:10.1046/j.1365-8711.1999.02794.x
[52] T. Treu, M. Stiavelli, P. Moller, S. Casertano and G. Bertin, 2001 The properties of field elliptical galaxies at intermediate redshift. 2. Photometry and spectroscopy of an HST selected sample, https://doi.org/10.1046/j.1365-8711.2001.04593.x Mon. Not. Roy. Astron. Soc.326 221 [astro-ph/0104177] · doi:10.1046/j.1365-8711.2001.04593.x
[53] T. Treu, M. Stiavelli, S. Casertano, P. Moller and G. Bertin, 2002 The evolution of field early-type galaxies to z∼ 0.7, https://doi.org/10.1086/338790 Astrophys. J. Lett.564L13 [astro-ph/0111504] · doi:10.1086/338790
[54] D. Stern, R. Jimenez, L. Verde, M. Kamionkowski and S. Stanford, 2010 Cosmic Chronometers: Constraining the Equation of State of Dark Energy. I: H(z) Measurements J. Cosmol. Astropart. Phys.2010 02 008 [0907.3149]
[55] D. Stern et al., 2001 First results from the spices survey, in https://doi.org/10.1007/10854354_14 Deep Fields, proceedings of the ESO Workshop, Garching, Germany, 9-12 October 2000, S. Cristiani, A. Renzini and R.E. Williams eds., Springer , pp. 76-80 [astro-ph/0012146] · doi:10.1007/10854354_14
[56] O. Le Fèvre et al., 2005 First epoch VVDS-deep survey: 11 564 spectra with 17.5 ≤ I_AB ≤ 24 and the redshift distribution over 0 ≤ z ≤ 5, https://doi.org/10.1051/0004-6361:20041960 Astron. Astrophys.439 845 [astro-ph/0409133] · doi:10.1051/0004-6361:20041960
[57] M. Moresco et al., 2012 Improved constraints on the expansion rate of the Universe up to z∼ 1.1 from the spectroscopic evolution of cosmic chronometers J. Cosmol. Astropart. Phys.2012 08 006 [1201.3609]
[58] A. Cimatti et al., 2002 The K 20 survey. 4. The Redshift distribution of K_s < 20 galaxies: A Test of galaxy formation models, https://doi.org/10.1051/0004-6361:20021012 Astron. Astrophys.391 L1 [astro-ph/0207191] · doi:10.1051/0004-6361:20021012
[59] R. Demarco et al., 2010 Star Formation Histories in a Cluster Environment at z∼ 0.84, https://doi.org/10.1088/0004-637X/725/1/1252 Astrophys. J.725 1252 [1009.3986] · doi:10.1088/0004-637X/725/1/1252
[60] SDSS collaboration, 2001 Spectroscopic target selection for the Sloan Digital Sky Survey: The Luminous red galaxy sample, https://doi.org/10.1086/323717 Astron. J.122 2267 [astro-ph/0108153] · doi:10.1086/323717
[61] D. Le Borgne et al., 2006 Gemini Deep Deep Survey. 6. Massive post-starburst galaxies at z=1, https://doi.org/10.1086/500005 Astrophys. J.642 48 [astro-ph/0503401] · doi:10.1086/500005
[62] S.J. Lilly et al., 2009 The zCOSMOS 10 k-Bright Spectroscopic Sample, https://doi.org/10.1088/0067-0049/184/2/218 Astrophys. J. Suppl. Ser.184 218 · doi:10.1088/0067-0049/184/2/218
[63] M. Onodera et al., 2010 A z=1.82 Analog of Local Ultra-massive Elliptical Galaxies, https://doi.org/10.1088/2041-8205/715/1/L6 Astrophys. J. Lett.715 L6 [1004.2120] · doi:10.1088/2041-8205/715/1/L6
[64] P. Rosati et al., 2009 Multi-wavelength study of XMMU J2235.3-2557: the most massive galaxy cluster at z > 1, https://doi.org/10.1051/0004-6361/200913099 Astron. Astrophys.508 583 [0910.1716] · doi:10.1051/0004-6361/200913099
[65] SDSS collaboration, 2002 Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample, https://doi.org/10.1086/342343 Astron. J.124 1810 [astro-ph/0206225] · doi:10.1086/342343
[66] GOODS collaboration, 2008 The Great Observatories Origins Deep Survey. VLT/FORS2 Spectroscopy in the GOODS-South Field. 3, https://doi.org/10.1051/0004-6361:20078332 Astron. Astrophys.478 83 [0711.0850] · doi:10.1051/0004-6361:20078332
[67] C. Zhang, H. Zhang, S. Yuan, T.-J. Zhang and Y.-C. Sun, 2014 Four new observational H(z) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven, https://doi.org/10.1088/1674-4527/14/10/002 Res. Astron. Astrophys.14 1221 [1207.4541] · doi:10.1088/1674-4527/14/10/002
[68] SDSS collaboration, 2009 The Seventh Data Release of the Sloan Digital Sky Survey, https://doi.org/10.1088/0067-0049/182/2/543 Astrophys. J. Suppl.182 543 [0812.0649] · doi:10.1088/0067-0049/182/2/543
[69] M. Moresco, 2015 Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at z ∼ 2, https://doi.org/10.1093/mnrasl/slv037 Mon. Not. Roy. Astron. Soc.450 L16 [1503.01116] · doi:10.1093/mnrasl/slv037
[70] R. Gobat et al., 2013 WFC3 GRISM Confirmation of the Distant Cluster Cl J1449+0856 at ⟨ z ⟩ = 2.00: Quiescent and Star-forming Galaxy Populations, https://doi.org/10.1088/0004-637X/776/1/9 Astrophys. J.776 9 [1305.3576] · doi:10.1088/0004-637X/776/1/9
[71] M. Kriek et al., 2009 An ultra-deep near-infrared spectrum of a compact quiescent galaxy at z=2.2, https://doi.org/10.1088/0004-637X/700/1/221 Astrophys. J.700 221 [0905.1692] · doi:10.1088/0004-637X/700/1/221
[72] J.-K. Krogager, A.W. Zirm, S. Toft, A. Man and G. Brammer, 2014 A spectroscopic sample of massive, quiescent z ∼ 2 galaxies: Implications for the evolution of the mass-size relation, https://doi.org/10.1088/0004-637X/797/1/17 Astrophys. J.797 17 [1309.6316] · doi:10.1088/0004-637X/797/1/17
[73] M. Onodera et al., 2012 Deep near-infrared spectroscopy of passively evolving galaxies at z > 1.4, https://doi.org/10.1088/0004-637X/755/1/26 Astrophys. J.755 26 [1206.1540] · doi:10.1088/0004-637X/755/1/26
[74] P. Saracco et al., 2005 The Density of very massive evolved galaxies to z ∼ 1.7, https://doi.org/10.1111/j.1745-3933.2005.00014.x Mon. Not. Roy. Astron. Soc. Lett.357 L40 [astro-ph/0412020] · doi:10.1111/j.1745-3933.2005.00014.x
[75] M. Moresco et al., 2016 A 6 evidence of the epoch of cosmic re-acceleration J. Cosmol. Astropart. Phys.2016 05 014 [1601.01701]
[76] BOSS collaboration, 2013 The Baryon Oscillation Spectroscopic Survey of SDSS-III, https://doi.org/10.1088/0004-6256/145/1/10 Astron. J.145 10 [1208.0022] · doi:10.1088/0004-6256/145/1/10
[77] SDSS collaboration, 2011 SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy and Extra-Solar Planetary Systems, https://doi.org/10.1088/0004-6256/142/3/72 Astron. J.142 72 [1101.1529] · doi:10.1088/0004-6256/142/3/72
[78] F. Beutler et al., 2011 The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, https://doi.org/10.1111/j.1365-2966.2011.19250.x Mon. Not. Roy. Astron. Soc.416 3017 [1106.3366] · doi:10.1111/j.1365-2966.2011.19250.x
[79] E.A. Kazin et al., 2014 The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature, https://doi.org/10.1093/mnras/stu778 Mon. Not. Roy. Astron. Soc.441 3524 [1401.0358] · doi:10.1093/mnras/stu778
[80] M. Ata et al., 2018 The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2, https://doi.org/10.1093/mnras/stx2630 Mon. Not. Roy. Astron. Soc.473 4773 [1705.06373] · doi:10.1093/mnras/stx2630
[81] J.E. Bautista et al., 2017 Measurement of baryon acoustic oscillation correlations at z=2.3 with SDSS DR12 Lyα-Forests, https://doi.org/10.1051/0004-6361/201730533 Astron. Astrophys.603 A12 [1702.00176] · doi:10.1051/0004-6361/201730533
[82] H. du Mas des Bourboux et al., 2017 Baryon acoustic oscillations from the complete SDSS-III Lyα-quasar cross-correlation function at z=2.4, https://doi.org/10.1051/0004-6361/201731731 Astron. Astrophys.608 A130 [1708.02225] · doi:10.1051/0004-6361/201731731
[83] A.G. Riess et al., 2018 New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant, https://doi.org/10.3847/1538-4357/aaadb7 Astrophys. J.855 136 [1801.01120] · doi:10.3847/1538-4357/aaadb7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.