×

Continuum limit for lattice Schrödinger operators. (English) Zbl 1492.81085

Summary: We study the behavior of solutions of the Helmholtz equation \((- \Delta_{\text{disc} , h}-E) u_h= f_h\) on a periodic lattice as the mesh size \(h\) tends to 0. Projecting to the eigenspace of a characteristic root \(\lambda_h(\xi)\) and using a gauge transformation associated with the Dirac point, we show that the gauge transformed solution \(u_h\) converges to that for the equation \((P( D_x)-E)v=g\) for a continuous model on \(\mathbb{R}^d\), where \(\lambda_h(\xi) \to P(\xi)\). For the case of the hexagonal and related lattices, in a suitable energy region, it converges to that for the Dirac equation. For the case of the square lattice, triangular lattice, hexagonal lattice (in another energy region) and subdivision of a square lattice, one can add a scalar potential, and the solution of the lattice Schrödinger equation \((- \Delta_{\text{disc} , h}+ V_{\text{disc} , h}-E) u_h= f_h\) converges to that of the continuum Schrödinger equation \((P( D_x)+V(x)-E)u=f\).

MSC:

81U40 Inverse scattering problems in quantum theory
47A40 Scattering theory of linear operators
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
81R25 Spinor and twistor methods applied to problems in quantum theory
81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics

References:

[1] Agmon, S., Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)2 (1975) 151-218. · Zbl 0315.47007
[2] Agmon, S. and Hörmander, L., Asymptotic properties of solutions of differential equations with simple characteristics, J. Anal. Math.30 (1976) 1-38. · Zbl 0335.35013
[3] Ando, K., Isozaki, H. and Morioka, H., Spectral properties of Schrödinger operators on perturbed lattices, Ann. Henri Poincaré17 (2016) 2103-2171. · Zbl 1347.81044
[4] Ando, K., Isozaki, H. and Morioka, H., Inverse scattering for Schrödinger operators on perturbed lattices, Ann. Henri Poincaré19 (2018) 3397-3455. · Zbl 1457.81124
[5] Barbaroux, J. M., Cornean, H. D. and Stockmeyer, E., Spectral gaps in graphene antidot lattices, Integral Equations Operator Theory89 (2017) 631-646. · Zbl 1381.81044
[6] Barbaroux, J. M., Cornean, H. D. and Zalczer, S., Localization for gapped Dirac Hamiltonians with random perturbations: Applications to graphene antidot lattices, Doc. Math.24 (2019) 65-93. · Zbl 1420.82028
[7] Baumgärtel, H., Analytic Perturbation Theory for Matrices and Operators, , Vol. 15 (Birkhäuser Verlag, Basel, 1985). · Zbl 0591.47013
[8] Cuenin, J. C. and Siedentop, H., Dipoles in graphene have infinitely many bound states, J. Math. Phys.55 (2014) 122304. · Zbl 1311.82055
[9] Eidus, D. M., The principle of limit amplitude, Russian Math. Surveys24 (1969) 97-167. · Zbl 0197.08102
[10] Fefferman, C. L. and Weinstein, M. I., Honeycomb lattice points and Dirac points, J. Amer. Math. Soc.25(4) (2012) 1169-1220. · Zbl 1316.35214
[11] Fefferman, C. L., Lee-Thorp, J. P. and Weinstein, M. I., Honeycomb Schrödinger operators in the strong binding regime, Comm. Pure Appl. Math.71 (2018) 1178-1270. · Zbl 1414.35061
[12] Hong, Y. and Yang, C., Strong convergence for discrete nonlinear Schrödinger equations in the continuum limit, SIAM J. Math. Anal.51 (2019) 1297-1320. · Zbl 1417.35179
[13] Hörmander, L., The Analysis of Linear Partial Differential Operators II, Differential Operators of Constant Coefficients (Springer Verlag, Berlin-Heidelberg-New York-Tokyo, 1983). · Zbl 0521.35002
[14] Ignat, L. I. and Zuazua, E., Numerical dispersive schemes for the nonlinear Schrödinger equation, SIAM J. Numer. Anal.47 (2009) 1366-1390. · Zbl 1192.65127
[15] Ikebe, T. and Saito, Y., Limiting absorption method and absolute continuity for Schrödinger operators, J. Math. Kyoto Univ.12 (1972) 513-542. · Zbl 0257.35022
[16] Ito, K. and Jensen, A., Branching form of the resolvent at threshold for ultra-hyperbolic operators and discrete Laplacians, J. Funct. Anal.277 (2019) 965-993. · Zbl 1496.47011
[17] Jäger, W., Ein gewöhnlicher differentialoperator zweiter Ordnung für Funktionen mit Werten in einem Hilbertraum, Math. Z.113 (1970) 68-98. · Zbl 0187.09001
[18] Kato, T., Perturbation Theory for Linear Operators, 2nd edn. (Springer, Berlin-Heidelberg-New York, 1980). · Zbl 0435.47001
[19] Kato, T. and Kuroda, S. T., The abstract theory of scattering, Rocky Mountain J. Math.1 (1971) 127-171. · Zbl 0241.47005
[20] Kuroda, S. T., Scattering theory for differential operators, I, II, J. Math. Soc. Japan25 (1973) 75-104, 222-234. · Zbl 0252.47007
[21] Mourre, E., Absence of singular continuous spectrum for certain self-adjoint operators, Comm. Math. Phys.78 (1981) 391-408. · Zbl 0489.47010
[22] Nakamura, S. and Tadano, Y., On a continuum limit of discrete Schrödinger operators on square lattice, J. Spectr. Theory11 (2021) 355-367. · Zbl 1487.47027
[23] Schoenberg, I. J., Cardinal Spline Interpolation, (SIAM, 1973). · Zbl 0264.41003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.