×

Nonlinear free vibrations of porous composite microplates incorporating various microstructural-dependent strain gradient tensors. (English) Zbl 1492.74076


MSC:

74H60 Dynamical bifurcation of solutions to dynamical problems in solid mechanics
Full Text: DOI

References:

[1] Zuo, X.; Yan, Z.; Hou, K.; Yang, H.; Xi, Y., Highly stable hierarchical porous nanosheet composite phase change materials for thermal energy storage, Applied Thermal Engineering, 163, 114417 (2019) · doi:10.1016/j.applthermaleng.2019.114417
[2] Sahmani, S.; Shahali, M.; Ghadiri-Nejad, M.; Khandan, A.; Aghdam, M. M.; Saber-Samandari, S., Effect of copper oxide nanoparticles on electrical conductivity and cell viability of calcium phosphate scaffolds with improved mechanical strength for bone tissue engineering, The European Physical Journal Plus, 134, 1-11 (2019) · doi:10.1140/epjp/i2019-12375-x
[3] Jeong, J. H.; Kim, Y. A.; Kim, B. H., Electrospun polyacrylonitrile/cyclodextrin-derived hierarchical porous carbon nanofiber/MnO_2 composites for supercapacitor applications, Carbon, 164, 296-304 (2020) · doi:10.1016/j.carbon.2020.03.052
[4] Chen, S.; Gao, J.; Yan, E.; Wang, Y.; Li, Y.; Lu, H.; Fan, L.; Wang, D.; An, Q., A novel porous composite membrane of PHA/PVA via coupling of electrospinning and spin coating for antibacterial applications, Materials Letters, 301, 130279 (2021) · doi:10.1016/j.matlet.2021.130279
[5] Sun, Y.; Liu, D.; Liu, W.; Liu, H.; Zhao, J.; Chen, P.; Wang, Q.; Wang, X.; Zou, Y., Fabrication of porous polyaniline/MWCNTs coated Co_9S_8 composite for electrochemical hydrogen storage application, Journal of Physics and Chemistry of Solids, 157, 110235 (2021) · doi:10.1016/j.jpcs.2021.110235
[6] HWANG, J., KIM, Y., YANG, H., and OH, J. H. Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor. Composites Part B: Engineering, 108607 (2021)
[7] Prakash, C.; Singh, S.; Ramakrishna, S.; Królczyk, G.; Le, C. H., Microwave sintering of porous Ti-Nb-HA composite with high strength and enhanced bioactivity for implant applications, Journal of Alloys and Compounds, 824, 153774 (2020) · doi:10.1016/j.jallcom.2020.153774
[8] Sahmani, S.; Bahrami, M.; Aghdam, M. M.; Ansari, R., Surface effects on the nonlinear forced vibration response of third-order shear deformable nanobeams, Composite Structures, 118, 149-158 (2014) · doi:10.1016/j.compstruct.2014.07.026
[9] Sahmani, S.; Bahrami, M.; Ansari, R., Surface energy effects on the free vibration characteristics of postbuckled third-order shear deformable nanobeams, Composite Structures, 116, 552-561 (2014) · doi:10.1016/j.compstruct.2014.05.035
[10] Sedighi, H. M.; Keivani, M.; Abadyan, M., Modified continuum model for stability analysis of asymmetric FGM double-sided NEMS: corrections due to finite conductivity, surface energy and nonlocal effect, Composites Part B: Engineering, 83, 117-133 (2015) · doi:10.1016/j.compositesb.2015.08.029
[11] Li, L.; Li, X.; Hu, Y., Free vibration analysis of nonlocal strain gradient beams made of functionally graded material, International Journal of Engineering Science, 102, 77-92 (2016) · Zbl 1423.74399 · doi:10.1016/j.ijengsci.2016.02.010
[12] Şimşek, M., Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach, International Journal of Engineering Science, 105, 12-27 (2016) · Zbl 1423.74412 · doi:10.1016/j.ijengsci.2016.04.013
[13] Sahmani, S.; Aghdam, M. M., Nonlinear vibrations of pre- and post-buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory, Journal of Biomechanics, 65, 49-60 (2017) · doi:10.1016/j.jbiomech.2017.09.033
[14] Sahmani, S.; Aghdam, M. M., Size-dependent axial instability of microtubules surrounded by cytoplasm of a living cell based on nonlocal strain gradient elasticity theory, Journal of Theoretical Biology, 422, 59-71 (2017) · Zbl 1370.92024 · doi:10.1016/j.jtbi.2017.04.012
[15] Sahmani, S.; Aghdam, M. M., Size-dependent nonlinear bending of micro/nano-beams made of nanoporous biomaterials including a refined truncated cube cell, Physics Letters, Section A: General, Atomic and Solid State Physics, 381, 3818-3830 (2017) · doi:10.1016/j.physleta.2017.10.013
[16] Khakalo, S.; Balobanov, V.; Niiranen, J., Modelling size-dependent bending, buckling and vibrations of 2D triangular lattices by strain gradient elasticity models: applications to sandwich beams and auxetics, International Journal of Engineering Science, 127, 33-52 (2018) · Zbl 1423.74343 · doi:10.1016/j.ijengsci.2018.02.004
[17] Thanh, C. L.; Tran, L. V.; Vu-Huu, T.; Abdel-Wahab, M., The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis, Computer Methods in Applied Mechanics and Engineering, 350, 337-361 (2019) · Zbl 1441.74082 · doi:10.1016/j.cma.2019.02.028
[18] Thanh, C. L.; Tran, L. V.; Bui, T. Q.; Nguyen, H. X.; Abdel-Wahab, M., Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates, Composite Structures, 221, 110838 (2019) · doi:10.1016/j.compstruct.2019.04.010
[19] Sahmani, S.; Fattahi, A. M.; Ahmed, N. A., Analytical mathematical solution for vibrational response of postbuckled laminated FG-GPLRC nonlocal strain gradient micro-/nanobeams, Engineering with Computers, 35, 1173-1189 (2019) · doi:10.1007/s00366-018-0657-8
[20] Mercan, K.; Emsen, E.; Civalek, O., Effect of silicon dioxide substrate on buckling behavior of Zinc Oxide nanotubes via size-dependent continuum theories, Composite Structures, 218, 130-141 (2019) · doi:10.1016/j.compstruct.2019.03.022
[21] Sarafraz, A.; Sahmani, S.; Aghdam, M. M., Nonlinear secondary resonance of nanobeams under subharmonic and superharmonic excitations including surface free energy effects, Applied Mathematical Modelling, 66, 195-226 (2019) · Zbl 1481.74465 · doi:10.1016/j.apm.2018.09.013
[22] Sarafraz, A.; Sahmani, S.; Aghdam, M. M., Nonlinear primary resonance analysis of nanoshells including vibrational mode interactions based on the surface elasticity theory, Applied Mathematics and Mechanics (English Edition), 41, 2, 233-260 (2020) · Zbl 1462.74077 · doi:10.1007/s10483-020-2564-5
[23] Tang, H.; Li, L.; Hu, Y., Coupling effect of thickness and shear deformation on size-dependent bending of micro/nano-scale porous beams, Applied Mathematical Modelling, 66, 527-547 (2019) · Zbl 1481.74467 · doi:10.1016/j.apm.2018.09.027
[24] Sahmani, S.; Safaei, B., Nonlinear free vibrations of bi-directional functionally graded micro/nano-beams including nonlocal stress and microstructural strain gradient size effects, Thin-Walled Structures, 140, 342-356 (2019) · doi:10.1016/j.tws.2019.03.045
[25] Sahmani, S.; Safaei, B., Nonlocal strain gradient nonlinear resonance of bi-directional functionally graded composite micro/nano-beams under periodic soft excitation, Thin-Walled Structures, 143, 106226 (2019) · doi:10.1016/j.tws.2019.106226
[26] Sahmani, S.; Safaei, B., Influence of homogenization models on size-dependent nonlinear bending and postbuckling of bi-directional functionally graded micro/nano-beams, Applied Mathematical Modelling, 82, 336-358 (2020) · Zbl 1481.74640 · doi:10.1016/j.apm.2020.01.051
[27] Fang, J.; Zheng, S.; Xiao, J.; Zhang, X., Vibration and thermal buckling analysis of rotating nonlocal functionally graded nanobeams in thermal environment, Aerospace Science and Technology, 106, 106146 (2020) · doi:10.1016/j.ast.2020.106146
[28] Li, Q.; Wu, D.; Gao, W.; Tin-Loi, F., Size-dependent instability of organic solar cell resting on Winkler-Pasternak elastic foundation based on the modified strain gradient theory, International Journal of Mechanical Sciences, 177, 105306 (2020) · doi:10.1016/j.ijmecsci.2019.105306
[29] Yuan, Y.; Zhao, X.; Zhao, Y.; Sahmani, S.; Safaei, B., Dynamic stability of nonlocal strain gradient FGM truncated conical microshells integrated with magnetostrictive facesheets resting on a nonlinear viscoelastic foundation, Thin-Walled Structures, 159, 107249 (2021) · doi:10.1016/j.tws.2020.107249
[30] Yuan, Y.; Zhao, K.; Han, Y.; Sahmani, S.; Safaei, B., Nonlinear oscillations of composite conical microshells with in-plane heterogeneity based upon a couple stress-based shell model, Thin-Walled Structures, 154, 106857 (2020) · doi:10.1016/j.tws.2020.106857
[31] Yuan, Y.; Zhao, K.; Zhao, Y.; Sahmani, S.; Safaei, B., Couple stress-based nonlinear buckling analysis of hydrostatic pressurized functionally graded composite conical microshells, Mechanics of Materials, 148, 103507 (2020) · doi:10.1016/j.mechmat.2020.103507
[32] Karamanli, A.; Vo, T. P., Size-dependent behaviour of functionally graded sandwich microbeams based on the modified strain gradient theory, Composite Structures, 246, 112401 (2020) · doi:10.1016/j.compstruct.2020.112401
[33] Lin, F.; Tong, L. H.; Shen, H. S.; Lim, C. W.; Xiang, Y., Assessment of first and third order shear deformation beam theories for the buckling and vibration analysis of nanobeams incorporating surface stress effects, International Journal of Mechanical Sciences, 186, 105873 (2020) · doi:10.1016/j.ijmecsci.2020.105873
[34] Fan, F.; Xu, Y.; Sahmani, S.; Safaei, B., Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach, Computer Methods in Applied Mechanics and Engineering, 372, 113400 (2020) · Zbl 1506.74181 · doi:10.1016/j.cma.2020.113400
[35] Fan, F.; Sahmani, S.; Safaei, B., Isogeometric nonlinear oscillations of nonlocal strain gradient PFGM micro/nano-plates via NURBS-based formulation, Composite Structures, 255, 112969 (2021) · doi:10.1016/j.compstruct.2020.112969
[36] Fan, F.; Safaei, B.; Sahmani, S., Buckling and postbuckling response of nonlocal strain gradient porous functionally graded micro/nano-plates via NURBS-based isogeometric analysis, Thin-Walled Structures, 159, 107231 (2021) · doi:10.1016/j.tws.2020.107231
[37] Tang, Y.; Qing, H., Elastic buckling and free vibration analysis of functionally graded Timoshenko beam with nonlocal strain gradient integral model, Applied Mathematical Modelling, 96, 657-677 (2021) · Zbl 1481.74311 · doi:10.1016/j.apm.2021.03.040
[38] Belarbi, M. O.; Houari, M. S A.; Daikh, A. A.; Garg, A.; Merzouki, T.; Chalak, H. D.; Hirane, H., Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory, Composite Structures, 264, 113712 (2021) · doi:10.1016/j.compstruct.2021.113712
[39] Yin, S.; Xiao, Z.; Deng, Y.; Zhang, G.; Liu, J.; Gu, S., Isogeometric analysis of size-dependent Bernoulli-Euler beam based on a reformulated strain gradient elasticity theory, Computers & Structures, 253, 106577 (2021) · doi:10.1016/j.compstruc.2021.106577
[40] Wang, B. B.; Lu, C.; Fan, C. Y.; Zhao, M. H., A meshfree method with gradient smoothing for free vibration and buckling analysis of a strain gradient thin plate, Engineering Analysis with Boundary Elements, 132, 159-167 (2021) · Zbl 1521.74106 · doi:10.1016/j.enganabound.2021.07.014
[41] Bacciocchi, M.; Tarantino, A. M., Analytical solutions for vibrations and buckling analysis of laminated composite nanoplates based on third-order theory and strain gradient approach, Composite Structures, 272, 114083 (2021) · doi:10.1016/j.compstruct.2021.114083
[42] Song, R.; Sahmani, S.; Safaei, B., Isogeometric nonlocal strain gradient quasi-three-dimensional plate model for thermal postbuckling of porous functionally graded microplates with central cutout with different shapes, Applied Mathematics and Mechanics (English Edition), 42, 6, 771-786 (2021) · Zbl 1476.83019 · doi:10.1007/s10483-021-2725-7
[43] Li, Y. S.; Xiao, T., Free vibration of the one-dimensional piezoelectric quasicrystal microbeams based on modified couple stress theory, Applied Mathematical Modelling, 96, 733-750 (2021) · Zbl 1481.74282 · doi:10.1016/j.apm.2021.03.028
[44] Tao, C.; Dai, T., Isogeometric analysis for size-dependent nonlinear free vibration of graphene platelet reinforced laminated annular sector microplates, European Journal of Mechanics-A/Solids, 86, 104171 (2021) · Zbl 1479.74057 · doi:10.1016/j.euromechsol.2020.104171
[45] Sahmani, S.; Safaei, B., Microstructural-dependent nonlinear stability analysis of random checkerboard reinforced composite micropanels via moving Kriging meshfree approach, The European Physical Journal Plus, 136, 1-31 (2021) · doi:10.1140/epjp/s13360-020-01001-7
[46] Zhang, Y.; Sahmani, S.; Safaei, B., Meshfree-based applied mathematical modeling for nonlinear stability analysis of couple stress-based lateral pressurized randomly reinforced microshells, Engineering with Computers, 1, 1-16 (2021)
[47] Phung-Van, P.; Thai, C. H.; Nguyen-Xuan, H.; Abdel-Wahab, M., An isogeometric approach of static and free vibration analyses for porous FG nanoplates, European Journal of Mechanics-A/Solids, 78, 103851 (2019) · Zbl 1472.74206 · doi:10.1016/j.euromechsol.2019.103851
[48] Senthilnathan, N. R.; Lim, S. P.; Lee, K. H.; Chow, S. T., Buckling of sheardeformable plates, AIAA Journal, 25, 1268-1271 (2012) · doi:10.2514/3.48742
[49] Lam, D. C C.; Yang, F.; Chong, A. C M.; Wang, J.; Tong, P., Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51, 1477-1508 (2003) · Zbl 1077.74517 · doi:10.1016/S0022-5096(03)00053-X
[50] Zhou, S.; Li, A.; Wang, B., A reformulation of constitutive relations in the strain gradient elasticity theory for isotropic materials, International Journal of Solids and Structures, 80, 28-37 (2016) · doi:10.1016/j.ijsolstr.2015.10.018
[51] Fu, G.; Zhou, S.; Qi, L., On the strain gradient elasticity theory for isotropic materials, International Journal of Engineering Science, 154, 103348 (2020) · Zbl 07228679 · doi:10.1016/j.ijengsci.2020.103348
[52] Liew, K. M.; Yang, J.; Kitipornchai, S., Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading, International Journal of Solids and Structures, 40, 3869-3892 (2003) · Zbl 1038.74546 · doi:10.1016/S0020-7683(03)00096-9
[53] Miller, R. E.; Shenoy, V. B., Size-dependent elastic properties of nanosized structural elements, Nanotechnology, 11, 139-147 (2000) · doi:10.1088/0957-4484/11/3/301
[54] Wang, Y. G.; Lin, W. H.; Liu, N., Large amplitude free vibration of size-dependent circular microplates based on the modified couple stress theory, International Journal of Mechanical Sciences, 71, 51-57 (2013) · doi:10.1016/j.ijmecsci.2013.03.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.