×

Interfacial fracture analysis for a two-dimensional decagonal quasi-crystal coating layer structure. (English) Zbl 1492.74015


MSC:

74B05 Classical linear elasticity
78M15 Boundary element methods applied to problems in optics and electromagnetic theory
Full Text: DOI

References:

[1] Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J. W., Metallic phase with long-range orientational order and no translational symmetry, Physical Review Letters, 53, 1951-1953 (1984) · doi:10.1103/PhysRevLett.53.1951
[2] Huttunen-Saarivirta, E., Microstructure, fabrication and properties of quasicrystalline Al-Cu-Fe alloys: a review, Journal of Alloys and Compounds, 363, 150-174 (2004) · doi:10.1016/S0925-8388(03)00445-6
[3] Ustinov, A. I.; Polischuk Huttunen-Saarivirta, S. S., Analysis of the texture of heterogeneous Al-Cu-Fe coatings containing quasicrystalline phase, Scripta Materialia, 47, 881-886 (2002) · doi:10.1016/S1359-6462(02)00380-9
[4] Guo, X. P.; Chen, J. F.; Yu, H. L.; Liao, H. L.; Coddet, C., A study on the microstructure and tribological behavior of cold-sprayed metal matrix composites reinforced by particulate quasicrystal, Surface & Coatings Technology, 268, 94-98 (2015) · doi:10.1016/j.surfcoat.2014.05.062
[5] Kang, S. S.; Dubois, J. M.; Stebut, J. V., Tribological properties of quasicrystalline coatings, Journal of Materials Research, 8, 2471-2481 (1993) · doi:10.1557/JMR.1993.2471
[6] Sordelet, D. J.; Besser, M. F.; Logsdon, J. L., Abrasive wear behavior of Al-Cu-Fe quasicrystalline composite coatings, Materials Science & Engineering A, 255, 54-65 (1998) · doi:10.1016/S0921-5093(98)00778-3
[7] Milman, Y. V.; Lotsko, D. V.; Dub, S. N.; Ustinov, A. I.; Polishchuk, S. S.; Ulshin, S. V., Mechanical properties of quasicrystalline Al-Cu-Fe coating with submicron-sized grains, Surface & Coatings Technology, 201, 5937-5943 (2007) · doi:10.1016/j.surfcoat.2006.10.048
[8] Fu, Y. Q.; An, L. T.; Zhou, F.; Zhao, Y. Y.; Yang, D. M.; Gao, Y., Al-Cu-Cr quasicrys-talline coatings prepared by low power plasma spraying, Surface & Coatings Technology, 202, 4964-4970 (2008) · doi:10.1016/j.surfcoat.2008.04.084
[9] Khun, N. W.; Li, R. T.; Loke, K.; Khor, K. A., Effects of Al-Cr-Fe quasicrystal content on tribological properties of cold-sprayed titanium composite coatings, Tribology Transactions, 58, 616-624 (2015) · doi:10.1080/10402004.2014.991860
[10] Gao, Y.; Ricoeur, A., Green’s functions for infinite bi-material planes of cubic quasicrystals with imperfect interface, Physics Letters A, 374, 4354-4358 (2010) · Zbl 1248.74003 · doi:10.1016/j.physleta.2010.08.051
[11] Fan, T. Y.; Xie, L. Y.; Fan, L.; Wang, Q. Z., Interface of quasicrystal and crystal, Chinese Physics B, 20, 076102 (2011) · doi:10.1088/1674-1056/20/7/076102
[12] Hou, P. F.; Chen, B. J.; Zhang, Y., An accurate and efficient analytical method for 1D hexagonal quasicrystal coating under the tangential force based on the Green’s function, International Journal of Mechanical Science, 131-132, 982-1000 (2017) · doi:10.1016/j.ijmecsci.2017.07.031
[13] Hou, P. F.; Chen, B. J.; Zhang, Y., An accurate and efficient analytical method for 1D hexagonal quasicrystal coating based on Green’s function, Zeitschrift für Angewandte Mathematik und Physik, 68, 95 (2017) · Zbl 1380.82051 · doi:10.1007/s00033-017-0842-4
[14] Li, Y.; Yang, L. Z.; Zhang, L. L.; Gao, Y., Nonlocal free and forced vibration of multilay-ered two-dimensional quasicrystal nanoplates, Mechanics of Advanced Materials and Structures, 28, 1216-1226 (2021) · doi:10.1080/15376494.2019.1655687
[15] Sun, T. Y.; Guo, J. H.; Zhan, X. Y., Static deformation of a multilayered one-dimensional hexagonal quasicrystal plate with piezoelectric effect, Applied Mathematics and Mechanics (English Edition), 39, 335-352 (2018) · Zbl 1383.74060 · doi:10.1007/s10483-018-2309-9
[16] Guo, J. H.; Sun, T. Y.; Pan, E., Three-dimensional nonlocal buckling of composite nanoplates with coated one-dimensional quasicrystal in an elastic medium, International Journal of Solids and Structures, 185-186, 272-280 (2020) · doi:10.1016/j.ijsolstr.2019.08.033
[17] Zhang, Z.; Urban, K., Transmission electron microscope observation of dislocation and stacking faults in a decagonal Al-Cu-Co alloy, Philosophical Magazine Letters, 60, 97-102 (1989) · doi:10.1080/09500838908206442
[18] Dang, H. Y.; Lv, S. Y.; Fan, C. Y.; Lu, C. S.; Ren, J. L.; Zhao, M. H., Analysis of antiplane interface cracks in one-dimensional hexagonal quasicrystal coating, Applied Mathematical Modelling, 81, 641-652 (2020) · Zbl 1481.74656 · doi:10.1016/j.apm.2020.01.024
[19] Zhao, M. H.; Fan, C. Y.; Lu, C. S.; Dang, H. Y., Analysis of interface cracks in one-dimensional hexagonal quasi-crystal coating under in-plane loads, Engineering Fracture Mechanics, 243, 107534 (2021) · doi:10.1016/j.engfracmech.2021.107534
[20] Zhang, H.; Sladek, J.; Sladek, V.; Wang, S. K.; Wen, P. H., Fracture analysis of functionally graded material by hybrid meshless displacement discontinuity method, Engineering Fracture Mechanics, 247, 107591 (2021) · doi:10.1016/j.engfracmech.2021.107591
[21] Crouch, S. L., Solution of plane elasticity problems by the displacement discontinuity method I infinite body solution, International Journal of Numerical Methods Engineering, 10, 301-343 (1976) · Zbl 0322.73016 · doi:10.1002/nme.1620100206
[22] Li, Y.; Dang, H. Y.; Xu, G. T.; Fan, C. Y.; Zhao, M. H., Extended displacement discontinuity boundary integral equation and boundary element method for cracks in thermo-magnetoelectro-elastic media, Smart Materials and Structures, 25, 085048 (2016) · doi:10.1088/0964-1726/25/8/085048
[23] Zhao, M. H.; Pan, Y. B.; Fan, C. Y.; Xu, G. T., Extended displacement discontinuity method for analysis of cracks in 2D thermal piezoelectric semiconductors, Smart Materials and Structures, 26, 085029 (2017) · doi:10.1088/1361-665X/aa754d
[24] Shen, B.; Shi, J., An indirect boundary element method for analysis of 3D thermoelastic problem with cracks, Engineering Analysis with Boundary Elements, 115, 120-132 (2020) · Zbl 1464.74320 · doi:10.1016/j.enganabound.2020.03.008
[25] Li, M.; Tian, Y. L.; Wen, P. H.; Aliabadi, M. H., Anti-plane interfacial crack with functionally graded coating: static and dynamic, Theoretical and Applied Fracture Mechanics, 86, 250-259 (2016) · doi:10.1016/j.tafmec.2016.07.010
[26] Ding, D. H.; Yang, W. G.; Hu, C. Z.; Wang, R. H., Generalized elasticity theory of quasicrystals, Physical Review B, 48, 7003-7010 (1993) · doi:10.1103/PhysRevB.48.7003
[27] Zhou, Y. B.; Liu, G. T.; Li, L. H., Effect of T-stress on the fracture in an infinite one-dimensional hexagonal piezoelectric quasicrystal with a Griffith crack, European Journal of Mechanics-A/Solids, 86, 104184 (2021) · Zbl 1479.74112 · doi:10.1016/j.euromechsol.2020.104184
[28] Zhao, M. H.; Shen, Y. P.; Liu, Y. J.; Liu, G. N., The method of analysis of cracks in three-dimensional transversely isotropic media: boundary integral equation approach, Engineering Analysis with Boundary Elements, 21, 169-178 (1988) · Zbl 0973.74648 · doi:10.1016/S0955-7997(98)00033-2
[29] Li, X. F.; Fan, T. Y., New method for solving elasticity problems of some planar quasicrystals and solutions, Chinese Physics Letters, 15, 278-280 (1998) · doi:10.1088/0256-307X/15/4/016
[30] Zhang, L. L.; Yang, L. Z.; Yu, L. Y.; Gao, Y., General solutions of thermoelastic plane problems of two-dimensional quasicrystals, Transactions of Nanjing University of Aeronautics and Astronautics, 31, 132-136 (2014)
[31] Gao, Y.; Shang, L. G., Governing equations and general solutions of plane elasticity of two-dimensional decagonal quasicrystals, International Journal of Modern Physics B, 25, 2769-2778 (2011) · Zbl 1333.74017 · doi:10.1142/S0217979211101065
[32] Hou, P. F.; Jiang, H. Y.; Li, Q. H., Three-dimensional steady-state general solution for isotropic thermoelastic materials with applications 1: general solutions, Journal of Thermal Stresses, 36, 727-747 (2013) · doi:10.1080/01495739.2013.788903
[33] Wen, P. H.; Aliabadi, M. H.; Sladek, J.; Sladek, V., Displacement discontinuity method for cracked orthotropic strip: dynamic, Wave Motion, 45, 293-308 (2008) · Zbl 1231.74145 · doi:10.1016/j.wavemoti.2007.06.006
[34] Zhang, A. B.; Wang, B. L., An opportunistic analysis of the interface crack based on the modified interface dislocation method, International Journal of Solids and Structures, 50, 15-20 (2013) · doi:10.1016/j.ijsolstr.2012.08.024
[35] Tang, R. J.; Chen, M. C.; Yue, J. C., Theoretical analysis of three-dimensional interface crack, Science in China Series A: Mathematics, 41, 443-448 (1998) · Zbl 0928.74085
[36] Fan, T. Y., Mathematical theory and methods of mechanics of quasicrystalline materials, Engineering, 5, 407-448 (2013) · doi:10.4236/eng.2013.54053
[37] Ding, H. J.; Chen, B.; Liang, J., General solutions for coupled equation for piezoelectric media, International Journal of Solids and Structures, 33, 2283-2298 (1996) · Zbl 0899.73453 · doi:10.1016/0020-7683(95)00152-2
[38] Erdogan, F.; Arin, K., A half plane and a strip with an arbitrarily located crack, International Journal of Fracture, 11, 191-204 (1975) · doi:10.1007/BF00038888
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.