×

Assessing the calibration of subdistribution hazard models in discrete time. (English. French summary) Zbl 1492.62167

Summary: The generalization performance of a risk prediction model can be evaluated by its calibration, which measures the agreement between predicted and observed outcomes on external validation data. Here, we propose methods for assessing the calibration of discrete time-to-event models in the presence of competing risks. Specifically, we consider the class of discrete subdistribution hazard models, which directly relate the cumulative incidence function of one event of interest to a set of covariates. We apply the methods to a prediction model for the development of nosocomial pneumonia. Simulation studies show that the methods are strong tools for calibration assessment even in scenarios with a high censoring rate and/or a large number of discrete time points.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62N01 Censored data models

References:

[1] Alba, A. C., Agoritsas, T., Walsh, M., Hanna, S., Iorioand, A., Devereaux, P. J., McGinn, T., & Guyatt, G. (2017). Discrimination and calibration of clinical prediction models: Users’ guides to the medical literature. Journal of the American Medical Association, 318, 1377-1384.
[2] Andersen, P. K., Geskus, R. B., deWitte, T., & Putter, H. (2012). Competing risks in epidemiology: Possibilities and pitfalls. International Journal of Epidemiology, 41, 861-870.
[3] Austin, P. C., Lee, D. S., & Fine, J. P. (2016). Introduction to the analysis of survival data in the presence of competing risks. Circulation, 133, 601-609.
[4] Austin, P. C. & Fine, J. P. (2017). Practical recommendations for reporting Fine-Gray model analyses for competing risk data. Statistics in Medicine, 36, 4391-4400.
[5] Baker, S. G., Cook, N. R., Vickers, A., & Kramer, B. S. (2009). Using relative utility curves to evaluate risk prediction. Journal of the Royal Statistical Society: Series A (Statistics in Society), 172, 729-748.
[6] Berger, M. & Schmid, M. (2018). Semiparametric regression for discrete time‐to‐event data. Statistical Modelling, 18, 322-345. · Zbl 07289511
[7] Berger, M., Schmid, M., Welchowski, T., Schmitz‐Valckenberg, S., & Beyersmann, J. (2020). Subdistribution hazard models for competing risks in discrete time. Biostatistics, 21, 449-466. https://doi.org/10.1093/biostatistics/kxy069. · doi:10.1093/biostatistics/kxy069
[8] Beyersmann, J., Gastmeier, P., Grundmann, H., Bärwolff, S., Geffers, C., Behnke, M., Rüden, H., & Schumacher, M. (2006). Use of multistate models to assess prolongation of intensive care unit stay due to nosocomial infection. Infection Control & Hospital Epidemiology, 27, 493-499.
[9] Beyersmann, J., Allignol, A., & Schumacher, M. (2011). Competing Risks and Multistate Models with R. Springer, New York.
[10] Braun, D., Gorfine, M., Katki, H. A., Ziogas, A., & Parmigiani, G. (2018). Nonparametric adjustment for measurement error in time‐to‐event data: Application to risk prediction models. Journal of the American Statistical Association, 113, 14-25. · Zbl 1398.62268
[11] Cortese, G. & Andersen, P. K. (2010). Competing risks and time‐dependent covariates. Biometrical Journal, 52, 138-158. · Zbl 1207.62087
[12] Cox, D. R. (1958). Two further applications of a model for binary regression. Biometrika, 45, 562-565. · Zbl 0085.13715
[13] Ding, A. A., Tian, S., Yu, Y., & Guo, H. (2012). A class of discrete transformation survival models with application to default probability prediction. Journal of the American Statistical Association, 107, 990-1003. · Zbl 1395.62354
[14] Doane, D. P. (1976). Aesthetic frequency classifications. The American Statistician, 30, 181-183.
[15] Fahrmeir, L. & Wagenpfeil, S. (1996). Smoothing hazard functions and time‐varying effects in discrete duration and competing risks models. Journal of the American Statistical Association, 91, 1584-1594. · Zbl 0883.62098
[16] Fine, J. P. & Gray, R. J. (1999). A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association, 94, 496-509. · Zbl 0999.62077
[17] Gibbs, M. (2011). Ecological risk assessment, prediction, and assessing risk predictions. Risk Analysis: An International Journal, 31, 1784-1788.
[18] Harrell, F. E. (2015). Regression Modeling Strategies. Springer, New York. · Zbl 1330.62001
[19] Henderson, R. & Keiding, N. (2005). Individual survival time prediction using statistical models. Journal of Medical Ethics, 31, 703-706.
[20] Heyard, R., Timsit, J.‐F., Held, L., & COMBACTE‐MAGNET Consortium. (2020). Validation of discrete time‐to‐event prediction models in the presence of competing risks. Biometrical Journal, 62, 643-657. · Zbl 1436.62563
[21] Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression. Hoboken, NJ, John Wiley & Sons. · Zbl 1276.62050
[22] Kalbfleisch, J. D. & Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data, 2nd ed.Wiley, Hoboken. · Zbl 1012.62104
[23] Kerr, K. F. & Janes, H. (2017). First things first: Risk model performance metrics should reflect the clinical application. Statistics in Medicine, 36, 4503-4508.
[24] Klein, J. P. & Andersen, P. K. (2005). Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function. Biometrics, 61, 223-229. · Zbl 1077.62081
[25] Lau, B., Cole, S. R., & Gange, S. J. (2009). Competing risk regression models for epidemiologic data. American Journal of Epidemiology, 170, 244-256.
[26] Le Gall, J.‐R., Lemeshow, S., & Saulnier, F. (1993). Anew simplified acute physiology score (SAPS II) based on a European/North American multicenter study. Journal of the American Medical Association, 270, 2957-2963.
[27] Lee, M. (2017). Inference for cumulative incidence on discrete failure times with competing risks. Journal of Statistical Computation and Simulation, 87, 1989-2001. · Zbl 07192045
[28] Lee, M., Feuer, E. J., & Fine, J. P. (2018). On the analysis of discrete time competing risks data. Biometrics, 74, 1468-1481.
[29] Liu, D., Zheng, Y., Prentice, R. L., & Hsu, L. (2014). Estimating risk with time‐to‐event data: An application to the women’s health initiative. Journal of the American Statistical Association, 109, 514-524.
[30] Miller, M. E., Langefeld, C. D., Tierney, W. M., Hui, S. L., & McDonald, C. J. (1993). Validation of probabilistic predictions. Medical Decision Making, 13, 49-57.
[31] Moons, K. G. M., Kengne, A. P., Grobbee, D. E., Royston, P., Vergouwe, Y., Altman, D. G., & Woodward, M. (2012a). Risk prediction models: II. External validation, model updating, and impact assessment. Heart, 98, 691-698.
[32] Moons, K. G. M., Kengne, A. P., Woodward, M., Royston, P., Vergouwe, Y., Altman, D. G., & Grobbee, D. E. (2012b). Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio) marker. Heart, 98, 683-690.
[33] Nightingale, F. (1863). Notes on Hospitals. Longman, Green, Longman, Roberts, and Green, London.
[34] Poguntke, I., Schumacher, M., Beyersmann, J., & Wolkewitz, M. (2018). Simulation shows undesirable results for competing risks analysis with time‐dependent covariates for clinical outcomes. BMC Medical Research Methodology, 18, 79.
[35] Schmid, M. & Berger, M. (2020). Competing risks analysis for discrete time‐to‐event data. Wiley Interdisciplinary Reviews: Computational Statistics, e1529. https://doi.org/10.1002/wics.1529 · Zbl 07910755 · doi:10.1002/wics.1529
[36] Schmid, M., Tutz, G., & Welchowski, T. (2018). Discrimination measures for discrete time‐to‐event predictions. Econometrics and Statistics, 7, 153-164.
[37] Soave, D. M. & Strug, L. J. (2018). Testing calibration of Cox survival models at extremes of event risk. Frontiers in Genetics, 9, 177.
[38] Steyerberg, E. W. (2019). Clinical Prediction Models, 2nd ed.Springer, New York.
[39] Steyerberg, E. W. & Harrell, F. E. (2016). Prediction models need appropriate internal, internal-external, and external validation. Journal of Clinical Epidemiology, 69, 245-247.
[40] Steyerberg, E. W. & Vergouwe, Y. (2014). Towards better clinical prediction models: Seven steps for development and an ABCD for validation. European Heart Journal, 35, 1925-1931.
[41] Steyerberg, E. W., Vickers, A. J., Cook, N. R., Gerds, T., Gonen, M., Obuchowski, N., Pencina, M. J., & Kattan, M. W. (2010). Assessing the performance of prediction models: A framework for some traditional and novel measures. Epidemiology, 21, 128.
[42] Tutz, G. & Schmid, M. (2016). Modeling Discrete Time‐to‐Event Data. Springer, New York. · Zbl 1338.62006
[43] Vickers, A. J. & Elkin, E. B. (2006). Decision curve analysis: A novel method for evaluating prediction models. Medical Decision Making, 26, 565-574.
[44] Vickers, A. J., Van Calster, B., & Steyerberg, E. W. (2016). Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ, 352, i6.
[45] Welchowski, T. & Schmid, M.2019. discSurv: Discrete Time Survival Analysis. R package version 1.4.1. http://cran.r‐project.org/web/packages/discSurv
[46] Witten, D. M. & Tibshirani, R. (2010). Survival analysis with high‐dimensional covariates. Statistical Methods in Medical Research, 19, 29-51.
[47] Wolkewitz, M., Vonberg, R. P., Grundmann, H., Beyersmann, J., Gastmeier, P., Bärwolff, S., Geffers, C., Behnke, M., Rüden, H., & Schumacher, M. (2008). Risk factors for the development of nosocomial pneumonia and mortality on intensive care units: Application of competing risks models. Critical Care, 12, R44.
[48] Young, J. G., Stensrud, M. J., Tchetgen Tchetgen, E. J., & Hernán, M. A. (2020). A causal framework for classical statistical estimands in failure‐time settings with competing events. Statistics in Medicine, 39, 1199-1236.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.