×

Hafnian point processes and quasi-free states on the CCR algebra. (English) Zbl 1492.60132

Summary: Let \(X\) be a locally compact Polish space and \(\sigma\) a nonatomic reference measure on \(X\) (typically \(X= \mathbb{R}^d\) and \(\sigma\) is the Lebesgue measure). Let \(X^2\ni(x,y)\mapsto\mathbb{K}(x,y)\in \mathbb{C}^{2 \times 2}\) be a \(2\times2\)-matrix-valued kernel that satisfies \(\mathbb{K}^T(x,y)=\mathbb{K}(y,x)\). We say that a point process \(\mu\) in \(X\) is hafnian with correlation kernel \(\mathbb{K}(x,y)\) if, for each \(n\in\mathbb{N}\), the \(n\)th correlation function of \(\mu \) (with respect to \(\sigma^{\otimes n})\) exists and is given by \(k^{(n)}(x_1,\ldots, x_n)=\operatorname{haf} [ \mathbb{K} (x_i, x_j)]_{i, j = 1, \ldots, n} \). Here \(\operatorname{haf}(C)\) denotes the hafnian of a symmetric matrix \(C\). Hafnian point processes include permanental and 2-permanental point processes as special cases. A Cox process \(\Pi_R\) is a Poisson point process in \(X\) with random intensity \(R(x)\). Let \(G(x)\) be a complex Gaussian field on \(X\) satisfying \(\int_{\Delta}\mathbb{E}(|G(x) |^2)\sigma(dx)<\infty\) for each compact \(\Delta\subset X\). Then the Cox process \(\Pi_R\) with \(R(x)=|G(x) |^2\) is a hafnian point process. The main result of the paper is that each such process \(\Pi_R\) is the joint spectral measure of a rigorously defined particle density of a representation of the canonical commutation relations (CCRs), in a symmetric Fock space, for which the corresponding vacuum state on the CCR algebra is quasi-free.

MSC:

60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
46L30 States of selfadjoint operator algebras
60G15 Gaussian processes

References:

[1] Araki, H., On quasifree states of CAR and Bogoliubov automorphisms, Publ. Res. Inst. Math. Sci.6 (1970/1971) 385-442. · Zbl 0227.46061
[2] Araki, H., On quasifree states of the canonical commutation relations. II, Publ. Res. Inst. Math. Sci.7 (1971/1972) 121-152. · Zbl 0239.46067
[3] Araki, H. and Shiraishi, M., On quasifree states of the canonical commutation relations. I, Publ. Res. Inst. Math. Sci.7 (1971/1972) 105-120. · Zbl 0239.46066
[4] Araki, H. and Yamagami, S., On quasi-equivalence of quasifree states of the canonical commutation relations, Publ. Res. Inst. Math. Sci.18 (1982) 703-758(283-338). · Zbl 0505.46052
[5] Araki, H. and Woods, E., Representations of the C.C.R. for a nonrelativistic infinite free Bose gas, J. Math. Phys.4 (1963) 637-662.
[6] Araki, H. and Wyss, W., Representations of canonical anticommutation relations, Helv. Phys. Acta37 (1964) 136-159. · Zbl 0137.23903
[7] Barvinok, A., Combinatorics and Complexity of Partition Functions (Springer, Cham, 2016). · Zbl 1367.05002
[8] Bauer, H., Measure and Integration Theory (de Gruyter, Berlin, 2001). · Zbl 0985.28001
[9] Benard, C. and Macchi, O., Detection and “emission” processes of quantum particles in a “chaotic state”, J. Math. Phys.14 (1973) 155-167.
[10] Berezansky, Y. M. and Kondratiev, Y. G., Spectral Methods in Infinite Dimensional Analysis (Kluwer Academic Publishers, Dordrecht, 1994).
[11] Berezansky, Y. M., Sheftel, Z. G. and Us, G. F., Funct. Anal., Vol. 1 (Birkhäuser-Verlag, Basel, 1996). · Zbl 0859.46001
[12] Berezin, F. A., The Method of Second Quantization., Vol. 24 (Academic Press, New York, 1966). · Zbl 0151.44001
[13] Borodin, A., Determinantal point processes, in The Oxford Handbook of Random Matrix Theory (Oxford University Press, Oxford, 2011), pp. 231-249. · Zbl 1238.60055
[14] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics, Equilibrium States. Models in Quantum Statistical Mechanics, Vol. 2, 2nd edn. (Springer-Verlag, Berlin, 1997). · Zbl 0903.46066
[15] Dereziński, J. and Gérard, C., Mathematics of Quantization and Quantum Fields (Cambridge University Press, Cambridge, 2013). · Zbl 1271.81004
[16] Eisenbaum, N. and Kaspi, H., On permanental processes, Stoch. Process. Appl.119 (2009) 1401-1415. · Zbl 1162.60334
[17] Eisenbaum, N., Stochastic order for alpha-permanental point processes, Stoch. Process. Appl.122 (2012) 952-967. · Zbl 1235.60051
[18] Eisenbaum, N., Inequalities for permanental processes, Electron. J. Probab.18 (2013) 99. · Zbl 1290.60044
[19] Eisenbaum, N., Permanental vectors with nonsymmetric kernels, Ann. Probab.45 (2017) 210-224. · Zbl 1375.60080
[20] Frenkel, P. E., Remarks on the \(\alpha \)-permanent, Math. Res. Lett.17 (2010) 795-802. · Zbl 1231.15010
[21] Goldin, G. A., Grodnik, J., Powers, R. T. and Sharp, D. H., Nonrelativistic current algebra in the \(N/V\) limit, J. Math. Phys.15 (1974) 88-100.
[22] Kogan, H., Marcus, M. B. and Rosen, J., Permanental processes, Commun. Stoch. Anal.5 (2011) 81-102. · Zbl 1331.60002
[23] Koshida, S., Pfaffian point processes from free fermion algebras; perfectness and conditional measures, Symmetry Integr. Geom. Methods Appl.17 (2021) 008, 35. · Zbl 1459.60109
[24] Lenard, A., Correlation functions and the uniqueness of the state in classical statistical mechanics, Commun. Math. Phys.30 (1973) 35-44.
[25] Lytvynov, E., Fermion and boson random point processes as particle distributions of infinite free Fermi and Bose gases of finite density, Rev. Math. Phys.14 (2002) 1073-1098. · Zbl 1041.81076
[26] Lytvynov, E. and Mei, L., On the correlation measure of a family of commuting Hermitian operators with applications to particle densities of the quasi-free representations of the CAR and CCR, J. Funct. Anal.245 (2007) 62-88. · Zbl 1231.47004
[27] Macchi, O., Distribution statistique des instants d’émission des photoélectrons d’une lumiére thermique, C. R. Acad. Sci. Paris Sér. A-B 272 (1971) A437-A440. · Zbl 0214.18302
[28] Macchi, O., The coincidence approach to stochastic point processes, Adv. Appl. Probab.7 (1975) 83-122. · Zbl 0366.60081
[29] Manuceau, J. and Verbeure, A., Quasi-free states of the C.C.R. algebra and Bogoliubov transformations, Comm. Math. Phys.9 (1968) 293-302. · Zbl 0167.55902
[30] Marcus, M. B. and Rosen, J., A sufficient condition for the continuity of permanental processes with applications to local times of Markov processes, Ann. Probab.41 (2013) 671-698. · Zbl 1329.60273
[31] Marcus, M. B. and Rosen, J., Conditions for permanental processes to be unbounded, Ann. Probab.45 (2017) 2059-2086. · Zbl 1386.60331
[32] Marcus, M. B. and Rosen, J., Sample path properties of permanental processes.Electron. J. Probab.23 (2018) 47. · Zbl 1410.60068
[33] Shirai, T. and Takahashi, Y., Random point fields associated with certain Fredholm determinants. I. Fermion, poisson and boson point processes, J. Funct. Anal.205 (2003) 414-463. · Zbl 1051.60052
[34] Surgailis, D., On multiple Poisson stochastic integrals and associated Markov semigroups, Probab. Math. Stat.3 (1984) 217-239. · Zbl 0548.60058
[35] Vere-Jones, D., A generalization of permanents and determinants, Linear Algebra Appl.111 (1988) 119-124. · Zbl 0665.15007
[36] Vere-Jones, D., Alpha-permanents and their applications to multivariate gamma, negative binomial and ordinary binomial distributions, New Zealand J. Math.26 (1997) 125-149. · Zbl 0879.15003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.