×

On the weak limit theorems for geometric summations of independent random variables together with convergence rates to asymmetric Laplace distributions. (English) Zbl 1492.60124

Summary: The asymmetric Laplace distribution arises as a limiting distribution of geometric summations of independent and identically distributed random variables with finite second moments. The main purpose of this paper is to study the weak limit theorems for geometric summations of independent (not necessarily identically distributed) random variables together with convergence rates to asymmetric Laplace distributions. Using Trotter-operator method, the orders of approximations of the distributions of geometric summations by the asymmetric Laplace distributions are established in term of the “large – \(\mathcal{O}\)” and “small-o” approximation estimates. The obtained results are extensions of some known ones.

MSC:

60G50 Sums of independent random variables; random walks
60F05 Central limit and other weak theorems
60E07 Infinitely divisible distributions; stable distributions
41A36 Approximation by positive operators
Full Text: DOI

References:

[1] J. Blanchet and P. Glynn, Uniform renewal theory with applications to expansions of random geometric sums, Adv. in Appl. Probab. 39 (2007), no. 4, 1070-1097. http: //projecteuclid.org/euclid.aap/1198177240 · Zbl 1132.60060
[2] P. L. Butzer and L. Hahn, General theorems on rates of convergence in distribution of random variables. I. General limit theorems, J. Multivariate Anal. 8 (1978), no. 2, 181-201. https://doi.org/10.1016/0047-259X(78)90071-4 · Zbl 0383.60024 · doi:10.1016/0047-259X(78)90071-4
[3] , General theorems on rates of convergence in distribution of random variables.
[4] II. Applications to the stable limit laws and weak law of large numbers, J. Multivariate Anal. 8 (1978), no. 2, 202-221. https://doi.org/10.1016/0047-259X(78)90072-6 · Zbl 0383.60025 · doi:10.1016/0047-259X(78)90072-6
[5] P. L. Butzer, L. Hahn, and U. Westphal, On the rate of approximation in the cen-tral limit theorem, J. Approximation Theory 13 (1975), 327-340. https://doi.org/10. 1016/0021-9045(75)90042-8 · Zbl 0298.60014 · doi:10.1016/0021-9045(75)90042-8
[6] C. Döbler, New Berry-Esseen and Wasserstein bounds in the CLT for non-randomly centered random sums by probabilistic methods, ALEA Lat. Am. J. Probab. Math. Stat. 12 (2015), no. 2, 863-902. · Zbl 1331.60047
[7] B. V. Gnedenko and G. Fahim, On a transfer theorem, Dokl. Akad. Nauk SSSR v. 187 (1969), no. 1, 463-470.
[8] B. V. Gnedenko and V. Yu. Korolev, Random Summation, CRC Press, Boca Raton, FL, 1996. · Zbl 0857.60002
[9] Z. Govindarajulu, On weak laws of large numbers, Proc. Indian Acad. Sci. Sect. A 71 (1970), 266-274. https://doi.org/10.1007/bf03049573 · Zbl 0222.60012 · doi:10.1007/bf03049573
[10] A. Gut, Probability: a graduate course, Springer Texts in Statistics, Springer, New York, 2005. · Zbl 1076.60001
[11] D. V. Hinkley and N. S. Revankar, A further analysis: ”On the estimation of the Pareto law from underreported data, (J. Econometrics 2 (1974), no. 4, 327-341) by M. J. Hartley and Revankar, J. Econometrics 5 (1977), no. 1, 1-11. https://doi.org/10.1016/0304-4076(77)90031-8 · Zbl 0335.62072 · doi:10.1016/0304-4076(77)90031-8
[12] T. L. Hung, A study of chi-square-type distribution with geometrically distributed degrees of freedom in relation to distributions of geometric random sums, Math. Slovaca 70 (2020), no. 1, 213-232. https://doi.org/10.1515/ms-2017-0345 · Zbl 1505.60022 · doi:10.1515/ms-2017-0345
[13] K. Jayakumar and A. P. Kuttykrishnan, A time-series model using asymmetric Laplace distribution, Statist. Probab. Lett. 77 (2007), no. 16, 1636-1640. https://doi.org/10. 1016/j.spl.2005.10.028 · Zbl 1127.62079 · doi:10.1016/j.spl.2005.10.028
[14] B. Jørgensen and C. C. Kokonendji, Dispersion models for geometric sums, Braz. J. Probab. Stat. 25 (2011), no. 3, 263-293. https://doi.org/10.1214/10-BJPS136 · Zbl 1271.62025 · doi:10.1214/10-BJPS136
[15] V. Kalashnikov, Geometric Sums: bounds for rare events with applications, Mathematics and its Applications, 413, Kluwer Academic Publishers Group, Dordrecht, 1997. https: //doi.org/10.1007/978-94-017-1693-2 · Zbl 0881.60043 · doi:10.1007/978-94-017-1693-2
[16] L. B. Klebanov, G. M. Maniya, and I. A. Melamed, A problem of V. M. Zolotarev and analogues of infinitely divisible and stable distributions in a scheme for summation of a random number of random variables, Teor. Veroyatnost. i Primenen. 29 (1984), no. 4, 757-760. · Zbl 0565.60014
[17] S. Kotz, T. J. Kozubowski, and K. Podgórski, The Laplace Distribution and General-izations, Birkhäuser Boston, Inc., Boston, MA, 2001. https://doi.org/10.1007/978-1-4612-0173-1 · Zbl 0977.62003 · doi:10.1007/978-1-4612-0173-1
[18] T. J. Kozubowski, Geometric infinite divisibility, stability, and self-similarity: an overview, in Stability in probability, 39-65, Banach Center Publ., 90, Polish Acad. Sci. Inst. Math., Warsaw, 2010. https://doi.org/10.4064/bc90-0-3 · Zbl 1214.60002 · doi:10.4064/bc90-0-3
[19] T. J. Kozubowski and K. Podgórski, A multivariate and asymmetric generalization of Laplace distribution, Comput. Statist. 15 (2000), no. 4, 531-540. · Zbl 1035.60010
[20] , Asymmetric Laplace distributions, Math. Sci. 25 (2000), no. 1, 37-46. · Zbl 0961.60026
[21] , Asymmetric Laplace laws and modeling financial data, Math. Comput. Modelling 34 (2001), no. 9-11, 1003-1021. https://doi.org/10.1016/S0895-7177(01) 00114-5 · Zbl 1002.60012 · doi:10.1016/S0895-7177(01)00114-5
[22] V. M. Kruglov and V. Yu. Korolev, Limit theorems for random sums (Russian), Moskov. Gos. Univ., Moscow, 1990. · Zbl 0702.60023
[23] J. W. Lindeberg, Eine neue Herleitung des Exponentialgesetzes in der Wahrschein-lichkeitsrechnung, Math. Z. 15 (1922), no. 1, 211-225. https://doi.org/10.1007/ BF01494395 · JFM 48.0602.04 · doi:10.1007/BF01494395
[24] J. Pike and H. Ren, Stein’s method and the Laplace distribution, ALEA Lat. Am. J. Probab. Math. Stat. 11 (2014), no. 1, 571-587. https://doi.org/10.1007/s11633-014-0767-8 · Zbl 1310.60020 · doi:10.1007/s11633-014-0767-8
[25] Z. Rychlik, A central limit theorem for sums of a random number of independent random variables, Colloq. Math. 35 (1976), no. 1, 147-158. https://doi.org/10.4064/cm-35-1-147-158 · Zbl 0351.60051 · doi:10.4064/cm-35-1-147-158
[26] V. Sakalauskas, Limit behavior of sums of a random number of independent random variables, Litovsk. Mat. Sb. 25 (1985), no. 2, 164-176. · Zbl 0575.60028
[27] P. K. Sen and J. M. Singer, Large Sample Methods in Statistics, Chapman & Hall, New York, 1993. · Zbl 0867.62003
[28] A. A. Toda, Weak limit of the geometric sum of independent but not identically dis-tributed random variables, arXiv:1111.1786v2 [math.PR] 20 Jan 2012.
[29] H. F. Trotter, An elementary proof of the central limit theorem, Arch. Math. 10 (1959), 226-234. https://doi.org/10.1007/BF01240790 · Zbl 0086.34002 · doi:10.1007/BF01240790
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.