×

Convergence of nonlinear filterings for stochastic dynamical systems with Lévy noises. (English) Zbl 1492.60100

Summary: We consider a nonlinear filtering problem of multiscale non-Gaussian signal processes and observation processes with jumps. First, we prove that the dimension for the signal system can be reduced by a homogenized approach. Second, convergence of the corresponding nonlinear filtering to the homogenized filtering is shown by a weak convergence technique. Finally, we give an example to explain our result.

MSC:

60G35 Signal detection and filtering (aspects of stochastic processes)
60G51 Processes with independent increments; Lévy processes
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

References:

[1] Ditlevsen, P. D., Observation of \(####\)-stable noise induced millennial climate changes from an ice record, Geophys. Res. Lett., 26, 1441-1444 (1999)
[2] Goggin, E., Convergence in distribution of conditional expectations, Ann. Probab, 22, 1097-1114 (1994) · Zbl 0805.60017
[3] Goggin, E., Convergence of filters with applications to the Kalman-Bucy case, IEEE Trans. Inform. Theory, 38, 1091-1100 (1992) · Zbl 0753.60039
[4] Kushner, H. J., Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems, Systems and Control: Foundations and Applications 3 (1990), Boston: Birkhäuser, Boston · Zbl 0931.93003
[5] Kushner, H. J., Robustness and convergence of approximations to nonlinear filters for jump-diffusions, Comput. Appl. Math, 16, 153-183 (1996) · Zbl 0951.93069
[6] Qiao, H. J., Effective filtering for multiscale stochastic dynamical systems driven by Lévy processes, J. Dyn. Diff. Equ (2021)
[7] Zhang, Y. J.; Qiao, H. J.; Duan, J. Q., Effective filtering analysis for non-Gaussian dynamic systems, Appl. Math. Optim., 83, 437-459 (2021) · Zbl 1470.60172
[8] Park, J. H.; Sowers, R. B.; Namachchivaya, N. S., Dimensional reduction in nonlinear filtering, Nonlinearity, 23, 305-324 (2010) · Zbl 1193.60082
[9] Park, J. H.; Namachchivaya, N. S.; Yeong, H. C., Particle filters in a multiscale environment: homogenized hybrid particle filter, J. Appl. Mech, 78, 1-10 (2011)
[10] Imkeller, P.; Namachchivaya, N. S.; Perkowski, N.; Yeong, H. C., Dimensional reduction in nonlinear filtering: a homogenization approach, Ann. Appl. Prob, 23, 2290-2326 (2013) · Zbl 1288.60049
[11] Papanicolaou, A.; Spiliopoulos, K., Dimension reduction in statistical estimation of partially observed multiscale processes, SIAM J. Uncertain. Quantif, 5, 1220-1247 (2017) · Zbl 1384.93148
[12] Meyer-Brandis, T.; Proske, F., Explicit solution of a non-linear filtering problems for Lévy processes with application to finance, Appl. Math. Optim., 50, 119-134 (2004) · Zbl 1053.60040
[13] Kurtz, T. G., Approximation of population processes. In: Vol. 36 of CBMS-NSF Regional Conf. Series in Appl. Math. (1981), Philadelphia: SIAM, Philadelphia · Zbl 0465.60078
[14] Qiao, H. J., Euler-Maruyama approximation for SDEs with jumps and non-Lipschitz coefficients, Osaka J. Math, 51, 47-66 (2014) · Zbl 1288.60074
[15] Qiao, H. J., Exponential ergodicity for SDEs with jumps and non-Lipschitz coefficients, J. Theor. Prob, 27, 137-152 (2014) · Zbl 1307.60085
[16] Stroock, D. W., Diffusion processes associated with Lévy generators, Z. Wahrscheinlichkeitstheorie Und Verw. Gebiete, 32, 209-244 (1975) · Zbl 0292.60122 · doi:10.1007/BF00532614
[17] Qiao, H. J.; Duan, J. Q., Nonlinear filtering of stochastic dynamical systems with Lévy noises, Adv. Appl. Probab., 47, 902-918 (2015) · Zbl 1326.60086
[18] Kleptsina, M. L.; Sh. Liptser, R.; Serebrovski, A. P., Nonlinear filtering problem with contamination, Ann. Appl. Probab, 7, 917-934 (1997) · Zbl 0895.60045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.