×

Categorical extension of dualities: from Stone to de Vries and beyond. I. (English) Zbl 1492.54013

Given a Stone-type dual equivalence \(\mathcal{A}^{\mathrm{op}} \longleftrightarrow \mathcal{X}\) and a full embedding \(\mathcal{X} \hookrightarrow \mathcal{Y}\), the authors propose a natural construction for a category \(\mathcal{B}\), into which \(\mathcal{A}\) may be fully embedded, allowing for an extension to a dual equivalence \(\mathcal{B}^{\mathrm{op}} \longleftrightarrow \mathcal{Y}\). A key ingredient to the definition of \(\mathcal{B}\) as a quotient of a comma category \(C(\mathcal{A},\mathcal{P},\mathcal{X})/\sim\) is the notion of an \(\mathcal{X}\)-covering class \(\mathcal{P}\) of morphisms in \(\mathcal{Y}\), which is an abstraction of projective covers (absolutes). The framework is applied to establish new proofs for known dualities, eventually presenting “mediating” categories of independent interest: (1) The approach to the de Vries duality between de Vries algebras and compact Hausdorff spaces starts from the duality \(\textbf{CBoo}^{\mathrm{op}} \longleftrightarrow \textbf{EKH}\) of complete Boolean algebras and extremally disconnected compact Hausdorff spaces, and yields an intermediate equivalent category \(\textbf{deV}^{\mathrm{op}} \longleftrightarrow (\textbf{deVBoo}/\sim)^{\mathrm{op}} \longleftrightarrow \textbf{KHaus}\) of de Vries algebras with handier morphisms. (2) The Fedorchuk duality \(\textbf{Fed}^{\mathrm{op}} \longleftrightarrow \textbf{KHaus}_{\mathrm{q-open}}\) is obtained from the duality \((\textbf{CBoo}_{\mathrm{sup}})^{\mathrm{op}} \longleftrightarrow \textbf{EKH}_{\mathrm{open}}\) having restrictions to suprema-preserving homomorphisms and open continuous mappings, as outlined in [G. Dimov et al., Topology Appl. 281, Article ID 107207, 26 p. (2020; Zbl 1457.54016)]. (3) Employing a hom representation of the de Vries duality and a construction essentially dual to that of (1), a duality theorem for the category of Tychonoff spaces from [G. Bezhanishvili et al., ibid. 257, 85–105 (2019; Zbl 1412.54034)] is obtained as the composite of the equivalences \(\textbf{UBdeV}^{\mathrm{op}} \longleftrightarrow \textbf{UdeV}^{\mathrm{op}} \longleftrightarrow D(\mathcal{A},\mathcal{J},\mathcal{X})^{\mathrm{op}} \longleftrightarrow \textbf{Tych}\), where \(\textbf{UBdeV}\) denotes the category of so-called universal Boolean de Vries extensions and \(\textbf{UdeV}\) that of universal de Vries pairs.

MSC:

54D30 Compactness
54D15 Higher separation axioms (completely regular, normal, perfectly or collectionwise normal, etc.)
18A40 Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.)
54E05 Proximity structures and generalizations
54C10 Special maps on topological spaces (open, closed, perfect, etc.)
54G05 Extremally disconnected spaces, \(F\)-spaces, etc.
06E15 Stone spaces (Boolean spaces) and related structures
54H10 Topological representations of algebraic systems
03G05 Logical aspects of Boolean algebras

References:

[1] Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and concrete categories: the joy of cats. In: Pure and Applied Mathematics (New York). Wiley, New York. xiv + 482. http://tac.mta.ca/tac/reprints/ articles/17/tr17abs.html. Republished in: Reprints in Theory and Applications of Categories, No. 17, pp. 1-507 (2006) · Zbl 1113.18001
[2] Adámek, J.; Herrlich, H.; Rosický, J.; Tholen, W., Injective hulls are not natural, Algebra Univ., 48, 379-388 (2002) · Zbl 1061.18010 · doi:10.1007/s000120200006
[3] Alexandroff, P.S.: Outline of Set Theory and General Topology. Nauka, Moskva (1977) (in Russian)
[4] Arhangel’skii, A.V., Ponomarev, V.I.: Fundamentals of General Topology: Problems and Exercises. Reidel, Dordrecht (1984) (Originally published by Izdatelstvo Nauka, Moscow (1974))
[5] Bezhanishvili, G., Stone duality and Gleason covers through de Vries duality, Topol. Appl., 157, 1064-1080 (2010) · Zbl 1190.54015 · doi:10.1016/j.topol.2010.01.007
[6] Bezhanishvili, G.; Bezhanishvili, N.; Sourabh, S.; Venema, Y., Irreducible equivalence relations, Gleason spaces, and de Vries duality, Appl. Categ. Struct., 25, 3, 381-401 (2017) · Zbl 1425.54006 · doi:10.1007/s10485-016-9434-2
[7] Bezhanishvili, G.; Morandi, PJ; Olberding, B., An extension of De Vries duality to completely regular spaces and compactifications, Topol. Appl., 257, 85-105 (2019) · Zbl 1412.54034 · doi:10.1016/j.topol.2019.02.007
[8] Bezhanishvili, G.; Morandi, PJ; Olberding, B., An extension of de Vries duality to normal spaces and locally compact Hausdorff spaces, J. Pure Appl. Algebra, 224, 703-724 (2020) · Zbl 1422.54012 · doi:10.1016/j.jpaa.2019.06.005
[9] Comfort, W.; Negrepontis, S., Chain Conditions in Topology (1982), Cambridge: Cambridge University Press, Cambridge · Zbl 0488.54002 · doi:10.1017/CBO9780511897337
[10] de Vries, H.: Compact spaces and compactifications, an algebraic approach. PhD thesis. Van Gorcum, The Netherlands (1962). https://www.illc.uva.nl/Research/Publications/Dissertations/HDS/
[11] Dimov, G., Some generalizations of the Fedorchuk duality theorem—I, Topol. Appl., 156, 728-746 (2009) · Zbl 1175.54035 · doi:10.1016/j.topol.2008.09.010
[12] Dimov, G.: A de Vries-type duality theorem for locally compact spaces—II, 1-37. arXiv:0903.2593v4
[13] Dimov, G., A de Vries-type duality theorem for the category of locally compact spaces and continuous maps—I, Acta Math. Hung., 129, 314-349 (2010) · Zbl 1240.54088 · doi:10.1007/s10474-010-0035-5
[14] Dimov, G., Some generalizations of the Stone duality theorem, Public. Math. Debr., 80, 255-293 (2012) · Zbl 1265.18008 · doi:10.5486/PMD.2012.4814
[15] Dimov, G.: Proximity-type relations on boolean algebras and their connections with topological spaces. Doctor of Sciences (= Dr. Habil.) Thesis, Faculty of Mathematics and Informatics, Sofia University “St. Kl. Ohridski”, Sofia, 1-292 (2013). https://www.fmi.uni-sofia.bg/bg/prof-dmn-georgi-dimov
[16] Dimov, G.; Ivanova, E., Yet another duality theorem for locally compact spaces, Houst. J. Math., 42, 2, 675-700 (2016) · Zbl 1354.18002
[17] Dimov, G., Ivanova-Dimova, E.: Two extensions of the Stone Duality to the category of zero-dimensional Hausdorff spaces. Filomat 35(6), (2021) (in press) (preprint in arXiv:1901.04537v3, 1-33)
[18] Dimov, G.; Ivanova-Dimova, E.; Tholen, W., Extensions of dualities and a new approach to the Fedorchuk duality, Topol. Appl., 281, 107207 (2020) · Zbl 1457.54016 · doi:10.1016/j.topol.2020.107207
[19] Dimov, G., Ivanova-Dimova, E., Tholen, W.: Categorical extension of dualities: from Stone to de Vries and beyond, II (Work in progress) · Zbl 1457.54016
[20] Dimov, G.; Vakarelov, D., Contact algebras and region-based theory of space: a proximity approach—I, Fundamenta Informaticae, 74, 2-3, 209-249 (2006) · Zbl 1111.68122
[21] Düntsch, I.; Vakarelov, D., Region-based theory of discrete spaces: a proximity approach, Ann. Math. Artif. Intell., 49, 5-14 (2007) · Zbl 1124.68105 · doi:10.1007/s10472-007-9064-3
[22] Engelking, R., General Topology (1989), Berlin: Heldermann Verlag, Berlin · Zbl 0684.54001
[23] Fedorchuk, V.V.: Boolean \(\delta \)-algebras and quasi-open mappings Sibirsk. Mat. Ž. 14(5), 1088-1099 (1973) (English translation: Siberian Math. J. 14(1973), 759-767 (1974)) · Zbl 0285.54031
[24] Gleason, AM, Projective topological spaces, Ill. J. Math., 2, 482-489 (1958) · Zbl 0083.17401
[25] Halmos, P., Lectures on Boolean Algebras (1974), New York: Springer, New York · Zbl 0285.06010 · doi:10.1007/978-1-4612-9855-7
[26] Johnstone, PT, Stone Spaces (1982), Cambridge: Cambridge University Press, Cambridge · Zbl 0499.54001
[27] Koppelberg, S.: Handbook on Boolean Algebras, vol. 1: General Theory of Boolean Algebras. North Holland (1989) · Zbl 0676.06019
[28] Mac Lane, S., Categories for the Working Mathematician (1998), New York: Springer, New York · Zbl 0906.18001
[29] Manes, E.G.: A triple-theoretic construction of compact algebras. In: B. Eckmann (ed.), Seminar on Triples and Categorical Homology Theory. Lecture Notes in Mathematics, vol. 80, pp. 91-119. Springer, Berlin (1969) · Zbl 0186.02901
[30] Mardešic, S.; Papic, P., Continuous images of ordered compacta, the Suslin property and dyadic compacta, Glasnik mat.-fis. i astronom., 17, 3-25 (1962) · Zbl 0119.17906
[31] Medvedev, M.. Ya..: Semiadjoint functors and Kan extensions. Sib. Math. J. 15, 674-676 (1975) (English translation of: Sib. Mat. Z. 15, 952-956 (1974)) · Zbl 0317.18002
[32] Naimpally, S.; Warrack, B., Proximity Spaces (1970), London: Cambridge, London · Zbl 0206.24601
[33] Ponomarev, VI, Paracompacta: their projection spectra and continuous mappings, Mat. Sb. (N.S.), 60, 89-119 (1963) · Zbl 0138.17504
[34] Ponomarev, VI; Šapiro, LB, Absolutes of topological spaces and their continuous mappings, Uspekhi Mat. Nauk, 31, 121-136 (1976) · Zbl 0341.54048
[35] Porter, JR; Woods, RG, Extensions and Absolutes of Hausdorff Spaces (1988), New York: Springer, New York · Zbl 0652.54016 · doi:10.1007/978-1-4612-3712-9
[36] Rump, W., The absolute of a topological space and its application to abelian l-groups, Appl. Categ. Struct., 17, 2, 153-174 (2009) · Zbl 1170.54002 · doi:10.1007/s10485-008-9133-8
[37] Stone, MH, The theory of representations for Boolean algebras, Trans. Am. Math. Soc., 40, 37-111 (1936) · JFM 62.0033.04
[38] van Oosten, J.: Basic Category Theory. Department of Mathematics, Utrecht University, The Netherlands (2002)
[39] Vakarelov, D.; Dimov, G.; Düntsch, I.; Bennett, B., A proximity approach to some region-based theories of space, J. Appl. Non-Class. Log., 12, 527-559 (2002) · Zbl 1185.68682 · doi:10.3166/jancl.12.527-559
[40] Walker, RC, The Stone-Čech Compactification (1974), Berlin: Springer, Berlin · Zbl 0292.54001 · doi:10.1007/978-3-642-61935-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.