×

Essential numerical ranges of operators in semi-Hilbertian spaces. (English) Zbl 1492.47010

Summary: Let \(A\) be a positive bounded operator on an infinite dimensional complex and separable Hilbert space \((\mathcal{H}, \langle, \rangle)\) and \(\mathfrak{A} : = \mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})\) be the Calkin algebra and \(\mathfrak{A}'\) its dual; here \(\mathcal{K}(\mathcal{H})\) denotes the closed ideal of \(\mathcal{B}(\mathcal{H})\) consisting of all compact operators on \(\mathcal{H}\). For an operator \(T\) on \(\mathcal{H}\), let \(\Vert T\Vert_A\) and \(V_A(T)\) denote the \(A\)-operator semi-norm and the \(A\)-numerical range induced by \(A\). The \(A\)-essential numerical range and the \(A\)-essential norm of \(T\) are defined by \(V_A^e(T)=V_{\widehat{A}}(\widehat{T})\) and \[\begin{aligned} \Vert T\Vert_A^e{:}{=}\sup_{{\mathcal{S}}_{\widehat{A}}({\mathfrak{A}})}\sqrt{f\left( \widehat{T^*} \widehat{A}\widehat{T}\right)}, \end{aligned} \] where \(\mathcal{S}_{\widehat{A}}({\mathfrak{A}})=\left\{f\in{\mathfrak{A}}': f\geq 0, f(\widehat{A})=1\right\}\) and \(\widehat{T}{:}{=}T+{\mathcal{K}}(\mathcal{H})\) is the coset containing \(T\). In this paper, we establish some properties of the \(A\)-essential numerical range. In particular we show that if \(T\) has an \(A\)-adjoint then \[ \begin{aligned} V_A^e(T)=\bigcap_{K\in \mathcal{K}_A(\mathcal{H})} V_A(T+K). \end{aligned} \] Further, we prove that \(\lambda \in V_A^e(T)\) if and only if there exists a sequence \((h_n)\in \mathcal{H}\) of \(A\)-unit vectors such that \(h_n\rightarrow 0\) weakly and \(\left\langle ATh_n, h_n\right\rangle \rightarrow \lambda\). Other auxiliary results are established.

MSC:

47A12 Numerical range, numerical radius
46C05 Hilbert and pre-Hilbert spaces: geometry and topology (including spaces with semidefinite inner product)
46L05 General theory of \(C^*\)-algebras
46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces)
Full Text: DOI

References:

[1] Ahmadi, MM; Gorjizadeh, G., A-numerical radius of a-normal operators in semi-Hilbertian spaces, Ital. J Pure Appl. Math., 36, 73-78 (2016) · Zbl 1373.47008
[2] Anderson, J.-H.: Derivations, commutators, and the essential numerical range. PhD thesis, Indiana University (1971)
[3] Arias, M-L; Corach, G.; Gonzalez, M-C, Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl., 428, 7, 1460-1475 (2008) · Zbl 1140.46009 · doi:10.1016/j.laa.2007.09.031
[4] Arias, M-L; Corach, G.; Gonzalez, M-C, Lifting properties in operator ranges, Acta Sci. Math. (Szeged), 75, 635-65 (2009) · Zbl 1212.46048
[5] Baklouti, H.; Feki, K.; Ahmed, O-A, Joint numerical ranges of operators in semi-Hilbertian spaces, Linear Algebra Appl., 555, 266-284 (2018) · Zbl 06914727 · doi:10.1016/j.laa.2018.06.021
[6] Blackadar, B., Operator Algebras: Theory of {C}^{\ast }-Algebras and Von Neumann Algebras (2006), Berlin: Springer, Berlin · Zbl 1092.46003 · doi:10.1007/3-540-28517-2
[7] Bonsall, F.; Duncan, J., Numerical Ranges II (1973), Cambridge: Cambridge University Press, Cambridge · Zbl 0262.47001 · doi:10.1017/CBO9780511662515
[8] Bourhim, A., Mabrouk, M.: A-Numerical range on \({C}^{\ast }\)-algebras. Positivity 25, 1489-1510 (2021). doi:10.1007/s11117-021-00825-6 · Zbl 1489.46061
[9] Conway, J., The numerical range and a certain convex set in an infinite factor, J. Funct. Anal., 5, 3, 428-435 (1970) · Zbl 0193.42702 · doi:10.1016/0022-1236(70)90019-4
[10] De Branges, L.; Rovnyak, J., Square Summable Power Series (1966), New York: Holt, Rinehart and Winston, New York · Zbl 0153.39602
[11] Dixmier, J.: Les fonctionnelles linéaires sur l’ensemble des opérateurs bornés d’un espace de Hilbert. Ann. Math. (2), 51, 387-408 (1950). doi:10.2307/1969331 · Zbl 0036.35801
[12] Douglas, R-G, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Am. Math. Soc., 17, 2, 413-415 (1966) · Zbl 0146.12503 · doi:10.1090/S0002-9939-1966-0203464-1
[13] Feki, K.: Spectral radius of semi-Hilbertian space operators and its applications. Ann. Funct. Anal. 11, 929-946 (2020) · Zbl 1501.47016
[14] Fillmore, P-A; Stampfli, J-G; Williams, J-P, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. (Szeged), 33, 197, 179-192 (1972) · Zbl 0246.47006
[15] Glimm, J., A Stone-Weierstrass theorem for {C}^{\ast }-algebras, Ann. Math., 72, 2, 216-244 (1960) · Zbl 0097.10705 · doi:10.2307/1970133
[16] Gustafson, K-E; Rao, D-K-M, Numerical Range: The Field of Values of Linear Operators and Matrices (1996), New York: Springer, New York · Zbl 0874.47003
[17] Lancaster, J.-S.: The boundary of the numerical range. Proc. Am. Math. Soc. 49, 393-398 (1975). doi:10.1090/S0002-9939-1975-0372644-2 · Zbl 0306.47001
[18] Moslehian, MS; Xu, Q.; Zamani, A., Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces, Linear Algebra Appl., 591, 299-321 (2020) · Zbl 1443.47010 · doi:10.1016/j.laa.2020.01.015
[19] Müller, V., The joint essential numerical range, compact perturbations, and the Olsen problem, Stud. Math., 197, 3, 275-290 (2010) · Zbl 1193.47007 · doi:10.4064/sm197-3-5
[20] Murphy, G., {C}^{\ast }-Algebras and Operator Theory (1990), Amsterdam: Elsevier Science, Amsterdam · Zbl 0714.46041
[21] Shapiro, J-H, Notes on the Numerical Range (2004), East Lansing: Michigan State University, East Lansing
[22] Stampfli, J-G; Williams, J-P, Growth conditions and the numerical range in a Banach algebra, Tohoku Math. J. (2), 20, 4, 417-424 (1968) · Zbl 0175.43902 · doi:10.2748/tmj/1178243070
[23] Williams, J-P, Finite operators, Proc. Am. Math. Soc., 26, 1, 129-136 (1970) · Zbl 0199.19302 · doi:10.1090/S0002-9939-1970-0264445-6
[24] Williams, J-P, The numerical range and the essential numerical range, Proc. Am. Math. Soc., 66, 1, 185-186 (1977) · Zbl 0365.47003
[25] Yamazaki, T., On upper and lower bounds of the numerical radius and an equality condition, Stud. Math., 178, 83-89 (2007) · Zbl 1114.47003 · doi:10.4064/sm178-1-5
[26] Zamani, A., A-numerical radius inequalities for semi-Hilbertian space operators, Linear Algebra Appl., 578, 159-183 (2019) · Zbl 1476.47002 · doi:10.1016/j.laa.2019.05.012
[27] Zamani, A.: A-numerical radius and product of semi-Hilbertian operators. Bull. Iran. Math. Soc. 47, 371-377 (2021). doi:10.1007/s41980-020-00388-4 · Zbl 1521.47015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.